Skip to main content
Log in

A reinforcement learning based approach for a multiple-load carrier scheduling problem

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper studies the problem of scheduling a multiple-load carrier which is used to deliver parts to line-side buffers of a general assembly (GA) line. In order to maximize the reward of the GA line, both the throughput of the GA line and the material handling distance are considered as scheduling criteria. After formulating the scheduling problem as a reinforcement learning (RL) problem by defining state features, actions and the reward function, we develop a Q(\(\lambda \)) RL algorithm based scheduling approach. To improve performance, forecasted information such as quantities of parts required in a look-ahead horizon is used when we define state features and actions in formulation. Other than applying traditional material handling request generating policy, we use a look-ahead based request generating policy with which material handling requests are generated based not only on current buffer information but also on future part requirement information. Moreover, by utilizing a heuristic dispatching algorithm, the approach is able to handle future requests as well as existing ones. To evaluate the performance of the approach, we conduct simulation experiments to compare the proposed approach with other approaches. Numerical results demonstrate that the policies obtained by the RL approach outperform other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Belmecheri, F., Prins, C., Yalaoui, F., & Amodeo, L. (2013). Particle swarm optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. Journal of Intelligent Manufacturing, 24(4), 775–789. doi:10.1007/s10845-012-0627-8.

    Article  Google Scholar 

  • Berman, S., Schechtman, E., & Edan, Y. (2009). Evaluation of automatic guided vehicle systems. Robotics and Computer-Integrated Manufacturing, 25(3), 522–528. doi:10.1016/j.rcim.2008.02.009.

    Article  Google Scholar 

  • Chen, C., Xi, L., Zhou, B., & Zhou, S. (2011). A multiple-criteria real-time scheduling approach for multiple-load carriers subject to LIFO-loading constraints. International Journal of Production Research, 49(16), 4787–4806. doi:10.1080/00207543.2010.510486.

    Article  Google Scholar 

  • Chen, C., Zhou, B., & Xi, L.. (2010). A support vector machine based scheduling approach for a material handling system. In: Presented at the natural computation (ICNC), 2010 sixth international conference on (Vol. 7, pp. 3768–3772).

  • Dang, Q.-V., Nielsen, I., Steger-Jensen, K., & Madsen, O. (2013). Scheduling a single mobile robot for part-feeding tasks of production lines. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0729-y.

  • de Koster, R.(M.) B. M., Le-Anh, T., & van der Meer, J. R. (2004). Testing and classifying vehicle dispatching rules in three real-world settings. Journal of Operations Management, 22(4), 369–386. doi:10.1016/j.jom.2004.05.006.

  • Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley.

    MATH  Google Scholar 

  • Fowler, J. W., Hogg, G. L., & Philips, D. T. (1992). Control of multiproduct bulk service diffusion/oxidation processes. IIE Transactions, 24(4), 84–96. doi:10.1080/07408179208964236.

    Article  Google Scholar 

  • Gabel, T., & Riedmiller, M. (2011). Distributed policy search reinforcement learning for job-shop scheduling tasks. International Journal of Production Research, 50(1), 41–61. doi:10.1080/00207543.2011.571443.

    Article  Google Scholar 

  • Grunow, M., Günther, H.-O., & Lehmann, M. (2004). Dispatching multi-load AGVs in highly automated seaport container terminals. OR Spectrum, 26(2), 211–235. doi:10.1007/s00291-003-0147-1.

    Article  MATH  Google Scholar 

  • Ho, Y.-C., Liu, H.-C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. Journal of Manufacturing Systems, 31(3), 288–300. doi:10.1016/j.jmsy.2012.03.002.

    Article  Google Scholar 

  • Jeon, S., Kim, K., & Kopfer, H. (2011). Routing automated guided vehicles in container terminals through the Q-learning technique. Logistics Research, 3(1), 19–27. doi:10.1007/s12159-010-0042-5.

    Article  Google Scholar 

  • Joe, Y. Y., Gan, O. P., & Lewis, F. L. (2012). Multi-commodity flow dynamic resource assignment and matrix-based job dispatching for multi-relay transfer in complex material handling systems (MHS). Journal of Intelligent Manufacturing, 1–17. doi:10.1007/s10845-012-0713-y.

  • Kim, D. B., & Hwang, H. (2001). A dispatching algorithm for multiple-load AGVS using a fuzzy decision-making method in a iob shop environment. Engineering Optimization, 33(5), 523–547. doi:10.1080/03052150108940932.

    Article  Google Scholar 

  • Le-Anh, T., & De Koster, M. B. M. (2006). A review of design and control of automated guided vehicle systems. European Journal of Operational Research, 171(1), 1–23. doi:10.1016/j.ejor.2005.01.036.

    Article  MathSciNet  MATH  Google Scholar 

  • Le-Anh, T., de Koster, R. B. M., & Yu, Y. (2010). Performance evaluation of dynamic scheduling approaches in vehicle-based internal transport systems. International Journal of Production Research, 48(24), 7219–7242. doi:10.1080/00207540903443279.

    Article  MATH  Google Scholar 

  • Li, X., Tao Geng, YuPu Yang, & Xiaoming Xu. (2002). Multiagent AGVs dispatching system using multilevel decisions method. In Presented at the American control conference, 2002. Proceedings of the 2002, IEEE (Vol. 2, pp. 1135–1136 vol. 2). doi:10.1109/ACC.2002.1023172.

  • Min, H.-S., & Yih, Y. (2003). Selection of dispatching rules on multiple dispatching decision points in real-time scheduling of a semiconductor wafer fabrication system. International Journal of Production Research, 41(16), 3921–3941.

    Article  MATH  Google Scholar 

  • Montazeri, M., & Van Wassenhove, L. N. (1990). Analysis of scheduling rules for an FMS. International journal of production research, 28(4), 785.

    Article  Google Scholar 

  • Nayyar, P., & Khator, S. K. (1993). Operational control of multi-load vehicles in an automated guided vehicle system. In Proceedings of the 15th annual conference on computers and industrial engineering (pp. 503–506). Blacksburg, Virginia, United States: Pergamon Press, Inc., Retrieved from http://portal.acm.org/citation.cfm?id=186340

  • Neuts, M. F. (1967). A general class of bulk queues with Poisson input. The Annals of Mathematical Statistics, 38(3), 759–770.

    Article  MathSciNet  MATH  Google Scholar 

  • Occena, L. G., & Yokota, T. (1993). Analysis of the AGV loading capacity in a JIT environment. Journal of Manufacturing Systems, 12(1), 24.

    Article  Google Scholar 

  • Orides, M., Castro, P. A. D., Kato, E. R. R., & Camargo, H. A. (2006). A genetic fuzzy system for defining a reactive dispatching rule for AGVs. In Systems, Man and Cybernetics, 2006. SMC ’06. IEEE international conference on (Vol. 1, pp. 56–61). doi:10.1109/ICSMC.2006.384358.

  • Ozden, M. (1988). A simulation study of multiple-load-carrying automated guided vehicles in a flexible manufacturing system. International Journal of Production Research, 26(8), 1353–1366. doi:10.1080/00207548808947950.

  • Peng, J., & Williams, R. J. (1996). Incremental multi-step Q-learning. Machine Learning, 22(1–3), 283–290. doi:10.1023/A:1018076709321.

    Google Scholar 

  • Potvin, J.-Y., Shen, Y., & Rousseau, J.-M. (1992). Neural networks for automated vehicle dispatching. Computers & Operations Research, 19(3–4), 267–276. doi:10.1016/0305-0548(92)90048-A.

  • Sarin, S. C., Varadarajan, A., & Wang, L. (2010). A survey of dispatching rules for operational control in wafer fabrication. Production Planning & Control, 22(1), 4–24. doi:10.1080/09537287.2010.490014.

  • Sinriech, D., & Kotlarski, J. (2002). A dynamic scheduling algorithm for a multiple-load multiple-carrier system. International Journal of Production Research, 40(5), 1065–1080. doi:10.1080/00207540110105662.

    Google Scholar 

  • Vahdani, B., Tavakkoli-Moghaddam, R., Zandieh, M., & Razmi, J. (2012). Vehicle routing scheduling using an enhanced hybrid optimization approach. Journal of Intelligent Manufacturing, 23(3), 759–774. doi:10.1007/s10845-010-0427-y.

    Google Scholar 

  • Vis, I. F. A. (2006). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677–709. doi:10.1016/j.ejor.2004.09.020.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, C.-N., & Chen, L.-C. (2012). The heuristic preemptive dispatching method of material transportation system in 300 mm semiconductor fabrication. Journal of Intelligent Manufacturing, 23(5), 2047–2056. doi:10.1007/s10845-011-0531-7.

    Article  Google Scholar 

  • Wang, Y. C., & Usher, J. M. (2005). Application of reinforcement learning for agent-based production scheduling. Engineering Applications of Artificial Intelligence, 18(1), 73–82. doi:10.1016/j.engappai.2004.08.018.

    Article  CAS  Google Scholar 

  • Weng, W. W., & Leachman, R. C. (1993). An improved methodology for real-time production decisions at batch-process work stations. IEEE Transactions on Semiconductor Manufacturing, 6(3), 219–225. doi:10.1109/66.238169.

    Article  Google Scholar 

  • Zhang, Z., Zheng, L., Hou, F., & Li, N. (2011). Semiconductor final test scheduling with Sarsa(\(\lambda \), k) algorithm. European Journal of Operational Research, 215(2), 446–458. doi: 10.1016/j.ejor.2011.05.052.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Z., Zheng, L., Li, N., Wang, W., Zhong, S., & Hu, K. (2012). Minimizing mean weighted tardiness in unrelated parallel machine scheduling with reinforcement learning. Computers & Operations Research, 39(7), 1315–1324. doi:10.1016/j.cor.2011.07.019.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research is supported by the National Science Foundation of China under Grants No. 51075277, No. 51275558 and No. 61273035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beixin Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Xia, B., Zhou, Bh. et al. A reinforcement learning based approach for a multiple-load carrier scheduling problem. J Intell Manuf 26, 1233–1245 (2015). https://doi.org/10.1007/s10845-013-0852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-013-0852-9

Keywords

Navigation