Skip to main content
Log in

A fuzzy ANP model for the selection of 3D coordinate-measuring machine

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The analytic network process (ANP) method is normally used to determine the relative weights of a set of evaluation criteria when ranking the competing alternatives in terms of their overall performance. It has the ability to deal with interdependent relationships among the criteria. Since the fuzzy logic approach provides more accuracy on judgments, the fuzzy extension of the ANP method enables the decision-maker to use uncertain human preferences as input information in the decision-making process. The fuzzy ANP enhances the potential of the conventional ANP for dealing with imprecise and vague human comparison judgments. In this work, a fuzzy ANP method is introduced to present a performance analysis on a specific machine tool selection problem. Unlike conventional fuzzy ANP applications, the proposed approach here is to be applied comprehensively for a sophisticated machine selection case in a company. Different from the machine tool selection studies so far done, machine hardware and software are to be discussed together in the selection process. It is used for the selection of a 3D coordinate-measuring machine for a die manufacturing company. The results indicate more accurate and reliable decision making in machine tool selection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdi, M. R. (2009). Fuzzy multi-criteria decision model for evaluating reconfigurable machines. International Journal of Production Economics, 117(1), 1–15.

    Article  Google Scholar 

  • Afgan, N. H., Carvalho, M. G., & Hovanov, N. V. (2000). Sustainability assessment of renewable energy systems. Energy Policy, 28(9), 603–612.

    Article  Google Scholar 

  • Arslan, M. C., Catay, B., & Budak, E. (2004). A decision support system for machine selection. Journal of Manufacturing Technology Management, 15(1), 101–109.

    Article  Google Scholar 

  • Assadi, P., & Sowlati, T. (2009). Design and manufacturing software selection in the wood industry using analytic hierarchy process. International Journal of Business Innovation and Research, 3(2), 182–198.

    Article  Google Scholar 

  • Ayağ, Z., & Özdemir, R. G. (2006a). A fuzzy AHP approach to evaluating machine tool alternatives. Journal of Intelligent Manufacturing, 17(2), 179–190.

    Article  Google Scholar 

  • Ayağ, Z., & Özdemir, R. G. (2006b). An intelligent approach to ERP software selection through fuzzy ANP. International Journal of Production Research, 45(10), 2169–2194.

    Google Scholar 

  • Ayağ, Z., & Özdemir, R. G. (2011). An intelligent approach to machine tool selection through fuzzy analytic network process. Journal of Intelligent Manufacturing, 22(2), 163–177.

    Article  Google Scholar 

  • Ayağ, Z., & Özdemir, R. G. (2012). Evaluating machine tool alternatives through modified TOPSIS and alpha-cut based fuzzy ANP. International Journal of Production Economics, 140(2), 630–636.

    Article  Google Scholar 

  • Balaji, S. M., Gurumurthy, A., & Kodali, R. (2009). Selection of a machine tool for FMS using ELECTRE III—A case study. In Proceedings of IEEE international conference on automation science and engineering (pp. 171–176).

  • Boran, F. E., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36(8), 11363–11368.

    Article  Google Scholar 

  • Boucher, T. O., & McStravic, E. L. (1991). Multi-attribute evaluation within a present value framework and its relation to analytic hierarchy process. The Engineering Economist, 37(1), 55–71.

    Article  Google Scholar 

  • Büyüközkan, G. (2004). Multi-criteria decision making for e-marketplace selection. Internet Research, 14(2), 139–154.

    Article  Google Scholar 

  • Chan, F. T. S., Chan, H. K., & Kazeroon, A. (2002). A fuzzy multi-criteria decision-making technique for evaluation of scheduling rules. The International Journal of Advanced Manufacturing Technology, 20(2), 103–113.

    Article  Google Scholar 

  • Chang, C.-W., Wu, C.-R., & Chen, H.-C. (2007). Applying a fuzzy analytic network process to construct a purchase project. A case for the purchase of a slicing diamond cutting machine. Production Planning & Control, 18(8), 628–640.

    Article  Google Scholar 

  • Chang, D.Y. (1992). Extent analysis and synthetic decision, optimization techniques and applications. Singapore: World Scientific, 352.

  • Chang, D. Y. (1996). Application of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95, 649–655.

    Article  Google Scholar 

  • Chang, P. L., & Chen, Y. C. (1994). A fuzzy multi-criteria decision making method for technology transfer strategy selection in biotechnology. Fuzzy Sets and Systems, 63(2), 131–139.

    Article  Google Scholar 

  • Chang, T. H., & Wang, T. C. (2009). Using the fuzzy multi-criteria decision making approach for measuring the possibility of successful knowledge management. Information Sciences, 179(4), 355–370.

    Google Scholar 

  • Chen, C. T., Lin, C. T., & Huang, S. F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102(2), 289–301.

    Article  Google Scholar 

  • Chryssolouris, G., & Guillot, M. (1990). A comparison of statistical and ai approaches to the selection of process parameters in intelligent machining. ASME Journal of Engineering for Industry, 112(2), 122–131.

    Article  Google Scholar 

  • Chu, T.-C., & Lin, Y.-C. (2003). A fuzzy topsis method for Robot selection. International Journal of Advanced Manufacturing Technology, 21, 284–290.

    Article  Google Scholar 

  • Cimren, E., Budak, E., & Catay, B. (2004). Development of a machine tool selection system using analytic hierarchy process. In Intelligent computation in manufacturing engineering, 4. CIRP international seminar on intelligent computation in manufacturing engineering (CIRP ICME ‘04), Sorrento, Italy.

  • Dağdeviren, M. (2008). Decision making in equipment selection: An integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing, 19(4), 397–406.

    Article  Google Scholar 

  • Dura’n, O., & Aguilo, J. (2008). Computer-aided machine-tool selection based on a fuzzy-AHP approach. Expert Systems with Applications, 34(3), 1787–1794.

    Article  Google Scholar 

  • Foote, B. L., Ravindran, A., & Lashine, S. (1988). Production planning & scheduling: Computational feasibility of multi-criteria models of production, planning and scheduling. Computers & Industrial Engineering, 15(1–4), 129–138.

    Article  Google Scholar 

  • Georgakellos, D. A. (2005). Technology selection from alternatives: A scoring model for screening candidates in equipment purchasing. International Journal of Innovation and Technology Management, 2(1), 1–18.

    Article  Google Scholar 

  • Goh, C. H., Tung, Y. C. A., & Cheng, C. H. (1995). A revised weighted sum decision model for robot selection. Computers & Industrial Engineering, 30(2), 193–199.

    Article  Google Scholar 

  • Gopalakrishnan, B., Yoshii, T., & Dappili, S. M. (2004). Decision support system for machining center selection. Journal of Manufacturing Technology Management, 15(2), 144–154.

    Article  Google Scholar 

  • Hocken, R. J., & Pereira, P. H. (2011). Coordinate measuring machines and systems (2nd ed.). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Iç, Y. T., & Yurdakul, M. (2009). Development of a decision support system for machining center selection. Expert Systems with Applications, 36(2), 3505–3513.

    Article  Google Scholar 

  • Işıklar, G., & Büyüközkan, G. (2007). Using a multi-criteria decision making approach to evaluate mobile phone alternatives. Computer Standards & Interfaces, 29(2), 265–274.

    Article  Google Scholar 

  • Jiang, B. C., & Hsu, C.-H. (2003). Development of a fuzzy decision model for manufacturability evaluation. Journal of Intelligent Manufacturing, 14(2), 169–181.

    Article  Google Scholar 

  • Karsak, E. E., & Tolga, E. (2001). Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. International Journal of Production Economics, 69(1), 49–64.

    Article  Google Scholar 

  • Klir, G. L., & Yuan, B. (1995). Fuzzy sets and fuzzy logic. New Jersey: Prentice Hall.

    Google Scholar 

  • Kumru, M., & Kumru, P. Y. (2013). AHP application in selecting the mode of transport for a logistics company. Journal of Advanced Transportation. doi:10.1002/atr.1240.

  • Layek, A.-M., & Lars, J. R. (2000). Algorithm based decision support system for the concerted selection of equipment in machining/ assembly cells. International Journal of Production Research, 38(2), 323–339.

    Article  Google Scholar 

  • Lee, A. H., Chen, H. H., & Kang, H. Y. (2009). Multi-criteria decision making on strategic selection of wind farms. Renewable Energy, 34(1), 120–126.

    Article  Google Scholar 

  • Lee, C. W., & Kwak, N. K. (1999). Information resource planning for a health-care system using an AHP-based goal programming method. The Journal of the Operational Research Society, 50(12), 1191–1198.

    Article  Google Scholar 

  • Liang, G. S., & Wang, M. J. J. (1991). A fuzzy multi-criteria decision-making method for facility site selection. The International Journal of Production Research, 29(11), 2313–2330.

    Article  Google Scholar 

  • Liang, G. S., & Wang, M. J. J. (1993). A fuzzy multi-criteria decision-making approach for robot selection. Robotics and Computer-Integrated Manufacturing, 10(4), 267–274.

    Article  Google Scholar 

  • Liang, S. K., & Lien, C. T. (2007). Selecting the optimal ERP software by combining the ISO 9126 standard and fuzzy AHP approach. Contemporary Management Research, 3(1), 23–44.

    Article  Google Scholar 

  • Lin, C. T., & George Lee, C. S. (1991). Neural-network-based fuzzy logic control and decision system. IEEE Transactions on Computers, 40(12), 1320–1336.

    Article  Google Scholar 

  • Lin, Z. C., & Yang, C. B. (1994). Evaluation of machine selection by the AHP method. Journal of Materials Processing Technology, 57(3), 253–258.

    Google Scholar 

  • Mourtzis, D., Doukas, M., & Psarommatis, F. (2012). A multi-criteria evaluation of centralized and decentralized production networks in a highly customer-driven environment. CIRP Annals—Manufacturing Technology, 61(1), 427–430.

    Article  Google Scholar 

  • Mulebeke, J. A. W., & Zheng, L. (2006). Analytic network process for software selection in product development: A case study. Journal of Engineering Technology Management, 23, 337–352.

    Article  Google Scholar 

  • Niaraki, A. S., & Kim, K. (2009). Ontology based personalized route planning system using a multi-criteria decision making approach. Expert Systems with Applications, 36(2), 2250–2259.

    Article  Google Scholar 

  • Oeltjenbruns, H., Kolarik, W. J., & Schnadt-Kirschner, R. (1995). Strategic planning in manufacturing systems-AHP application to an equipment replacement decision. International Journal of Production Economics, 38(2), 189–197.

    Article  Google Scholar 

  • Önüt, S., Kara, S. S., & Efendigil, T. (2008). A hybrid fuzzy MCDM approach to machine tool selection. Journal of Intelligent Manufacturing, 19(4), 443–453.

    Article  Google Scholar 

  • Ozelkan, E. C., & Duckstein, L. (1996). Analyzing water resources alternatives and handling criteria by multicriterion decision techniques. Journal of Environmental Management, 48(1), 69–96.

    Article  Google Scholar 

  • Özgen, A., Tuzkaya, G., Tuzkaya, U. R., & Özgen, D. (2011). A multi-criteria decision making approach for machine tool selection problem in a fuzzy environment. International Journal of Computational Intelligence Systems, 4(4), 431–445.

    Article  Google Scholar 

  • Papakostas, N., Mourtzis, D., Makris, S., Michalos, G., & Chryssolouris, G. (2012). An agent-based methodology for manufacturing decision making: A textile case study. International Journal of Computer Integrated Manufacturing, 25(6), 509–526.

    Article  Google Scholar 

  • Paramasivam, V., Senthil, V., & Ramasamy, N. R. (2011). Decision making in equipment selection: An integrated approach with digraph and matrix approach, AHP and ANP. The International Journal of Advanced Manufacturing Technology, 54(9–12), 1233–1244.

    Article  Google Scholar 

  • Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8(4), 365–381.

    Article  Google Scholar 

  • Putrus, P. (1990). Accounting for intangibles in integrated manufacturing (non-financial justification based on analytical hierarchy process. Information Strategy, 6, 25–30.

    Google Scholar 

  • Raju, K. S., & Pillai, C. R. S. (1999). Multicriterion decision making in performance evaluation of irrigation projects. European Journal of Operational Research, 112(3), 479–488.

    Article  Google Scholar 

  • Roy, B. (1996). Multi-criteria methodology for decision analysis. Dordrecht: Kluwer.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process. Pittsburgh, PA: RWS Publications.

    Google Scholar 

  • Samvedi, A., Jain, V., & Chan, F. T. S. (2012). An integrated approach for machine tool selection using fuzzy analytical hierarchy process and grey relational analysis. International Journal of Production Research, 50(12), 3211–3221.

    Article  Google Scholar 

  • Sun, S. (2002). Assessing computer numerical control machines using data envelopment analysis. International Journal of Production Research, 40(9), 2011–2039.

    Google Scholar 

  • Tabucanon, M. T., Batanov, D. N., & Verma, D. K. (1994). Intelligent support system (DSS) for the selection process of alternative machines for flexible manufacturing systems. Computers in Industry, 25(2), 131–143.

    Google Scholar 

  • Taha, Z., & Rostam, S. (2011). A fuzzy AHP-ANN-based decision support system for machine tool selection in a flexible manufacturing cell. The International Journal of Advanced Manufacturing Technology, 57(5–8), 719–733.

    Google Scholar 

  • Taha, Z., & Rostam, S. (2012). A hybrid fuzzy AHP-PROMETHEE decision support system for machine tool selection in flexible manufacturing cell. Journal of Intelligent Manufacturing, 23(6), 2137–2149.

    Article  Google Scholar 

  • Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism Management, 23(2), 107–115.

    Article  Google Scholar 

  • Tuzkaya, G., Gülsün, B., Kahraman, C., & Özgen, D. (2010). An integrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application. Expert Systems with Applications, 37(4), 2853–2863.

    Article  Google Scholar 

  • Tzeng, G. H., & Huang, C. Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals of Operations Research, 197(1), 159–190.

  • Ulubeyli, S., & Kazaz, Z. (2009). A multiple criteria decision-making approach to the selection of concrete pumps. Journal of Civil Engineering and Management, 15(4), 369–376.

    Article  Google Scholar 

  • Vincke, P. (1992). Multi-criteria decision-aid. New York: Wiley.

    Google Scholar 

  • Wadhwa, S., Madaan, J., & Chan, F. T. S. (2009). Flexible decision modelling of reverse logistics system: A value adding MCDM approach for alternative selection. Robotics and Computer-Integrated Manufacturing, 25(2), 460–469.

    Google Scholar 

  • Wang, G., Huang, S. H., & Dismukes, J. P. (2004). Product-driven supply chain selection using integrated multi-criteria decision-making methodology. International Journal of Production Economics, 91(1), 1–15.

    Article  Google Scholar 

  • Wang, T. Y., Shaw, C.-F., & Chen, Y.-L. (2000). Machine selection in flexible manufacturing cell: A fuzzy multiple attribute decision making approach. International Journal of Production Research, 38(9), 2079–2097.

    Article  Google Scholar 

  • Wei, C. C., Chien, C. F., & Wang, M. J. J. (2005). An AHP-based approach to ERP system selection. International Journal of Production Economics, 96(1), 47–62.

    Article  Google Scholar 

  • Yazgan, H. R., Boran, S., & Goztepe, K. (2009). An ERP software selection process with using artificial neural network based on analytic network process approach. Expert Systems with Applications, 36(5), 9214–9222.

    Article  Google Scholar 

  • Yurdakul, M. (2004). AHP as a strategic decision-making tool to justify machine tool selection. Journal of Materials Processing Technology, 146(3), 365–376.

    Article  Google Scholar 

  • Yurdakul, M., & Iç, Y. T. (2009). Analysis of the benefit generated by using fuzzy numbers in a TOPSIS model developed for machine tool selection problems. Journal of Materials Processing Technology, 209(1), 310–317.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  • Zimmermann, H.-J. (2001). Fuzzy set theory—And its applications (4th ed.). Boston: Kluwer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Kumru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumru, M., Kumru, P.Y. A fuzzy ANP model for the selection of 3D coordinate-measuring machine. J Intell Manuf 26, 999–1010 (2015). https://doi.org/10.1007/s10845-014-0882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0882-y

Keywords

Navigation