Skip to main content

Advertisement

Log in

Automatic optical inspection system for IC molding surface

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Success or failure of an IC product hinges on the quality of molding process which protects chips from the harm done by external force and moisture. Defects such as cracks, dilapidations or voids may be embedding on the molding surface while a chip was being molded. Human inspection often neglects a very tiny crack or a low-contrast void. Hence an automatic optical inspection system for the integrated circuit (IC) molding surface cannot be over emphasized. The proposed system is composed of a charged coupled device, a coaxial light, a back light and a motion control unit. Based on the characteristics of statistical textures of the molding surface, a series of digital image processing is carried out, including normalization, shrinking, segmenting and Fourier based image restoration and defect identification. Training of the parameter associated with defect inspection algorithm is also discussed. Results of the experiment suggest that the inspection system works effectively with high accuracy rate of 94.2 %, contributing to the inspection quality of IC molding surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Biegelbauer, G., & Vincze, M. (2004). Fast and robust bore detection in range image data for industrial automation. In Proceedings of the 2nd international symposium on 3D data processing, visualization and transmission (pp. 526–533).

  • Biegelbauer, G., Vincze, M., Nohmayer, H., & Eberst, C. (2004). Sensor based robotics for fully automated inspection of bores at low volume high variant parts. In Proceedings of the 2004 IEEE international conference on robotics and automation (pp. 4852–4857).

  • Chang, C. Y., Li, C. H., Chang, Y. C., & Jeng, M. (2011). Wafer defect inspection by neural analysis of region features. Journal of Intelligent Manufacturing, 22(6), 953–964.

    Article  Google Scholar 

  • Chang, P. C., Chen, L. Y., & Fan, C. Y. (2008). A case-based evolutionary model for defect classification of printed circuit board images. Journal of Intelligent Manufacturing, 19(2), 203–214.

    Article  Google Scholar 

  • Chen, L. C., & Kuo, C. C. (2008). Automatic TFT-LCD mura defect inspection using discrete cosine transform-based background filtering and ‘just noticeable difference’ quantification strategies. Measurement Science and Technology, 19(1), 015507.

    Article  Google Scholar 

  • Chen, S. H., & Perng, D. B. (2011). Directional textures auto-inspection using principal component analysis. International Journal of Advanced Manufacturing Technology, 55(9–12), 1099–1110.

    Article  Google Scholar 

  • Fitch, A. J., Kadyrov, A., Christmas, W. J., & Kittler, J. (2005). Fast robust correlation. IEEE Transactions on Image Processing, 14(8), 1063–1073.

    Article  Google Scholar 

  • Kumar, A. (2008). Computer-vision-based fabric defect detection: A survey. IEEE Transactions on Industrial Electronics, 55(1), 348–363.

    Article  Google Scholar 

  • Kuo, C. F. J., Hsu, C. T. M., Liu, Z. X., & Wu, H. C. (2013). Automatic inspection system of LED chip using two-stages back-propagation neural network. Journal of Intelligent Manufacturing. doi:10.1007/s10845-012-0725-7.

  • Kwak, C., Ventura, J. A., & Tofang-Sazi, K. (2000). A neural network approach for defect identification and classification on leather fabric. Journal of Intelligent Manufacturing, 11(5), 485–499.

    Article  Google Scholar 

  • Lewis, J. P. (1995). Fast normalized cross-correlation. Vision Interface, 10(1), 120–123.

    Google Scholar 

  • Lu, C. J., & Tsai, D. M. (2005). Automatic defect inspection for LCDs using singular value decomposition. International Journal of Advanced Manufacturing Technology, 25(1–2), 53–61.

    Article  Google Scholar 

  • Ma, L., Bao, S., Lv, D., Du, Z., & Li, S. (2007). Application of C-mode scanning acoustic microscopy in packaging. In: 8th international conference on electronic packaging technology (pp. 1–6).

  • Moore, T. M., & Hartfield, C. D. (1999). Package analysis: SAM and X-ray. In Failure analysis of integrated circuits (pp. 43–57). New York: Springer.

  • Newman, T. S., & Jain, A. K. (1995). Survey of automated visual inspection. Computer Vision and Image Understanding, 61(2), 231–262.

    Article  Google Scholar 

  • Ong, S. H., Tan, S. H., & Tan, K. T. (1997). Acoustic microscopy reveals IC packaging hidden defects. In Proceedings of the 1997 1st electronic packaging technology conference (pp. 297–303)

  • Perng, D. B., Chen, Y. C., & Lee, M. K. (2005). A novel AOI system for OLED panel inspection. In Journal of Physics: Conference series, 7th international symposium on measurement technology and Intelligent instruments (Vol. 13, pp. 353–356).

  • Perng, D. B., Chou, C. C., & Lee, S. M. (2007). Design and development of a new machine vision wire bonding inspection system. International Journal of Advanced Manufacturing Technology, 34(3–4), 323–334.

    Article  Google Scholar 

  • Perng, D. B., & Chen, S. H. (2011). Directional textures auto-inspection using discrete cosine transform. International Journal of Production Research, 49(23), 7171–7187.

    Article  Google Scholar 

  • Perng, D. B., Chen, S. H., & Chang, Y. S. (2010). A novel internal thread defect auto-inspection system. International Journal of Advanced Manufacturing Technology, 47(5–8), 731–743.

    Article  Google Scholar 

  • Sun, T. H., Tien, F. C., Tien, F. C., & Kuo, R. J. (2014). Automated thermal fuse inspection using machine vision and artificial neural networks. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0902-y.

  • Tsai, D. M., & Hsieh, C. Y. (1999). Automated surface inspection for directional textures. Image and Vision Computing, 18(1), 49–62.

    Article  Google Scholar 

  • Tsai, D. M., & Huang, T. Y. (2003). Automated surface inspection for statistical textures. Image and Vision Computing, 21(4), 307–323.

    Article  Google Scholar 

  • Tsai, D. M., & Chiang, C. H. (2003). Automatic band selection for wavelet reconstruction in the application of defect detection. Image and Vision Computing, 21(5), 413–431.

    Article  Google Scholar 

  • Uehara, M., Yashiro, W., & Momose, A. (2013). Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices. Journal of Applied Physics, 114(13), 134901.

    Article  Google Scholar 

  • U.S. TECH. (2008). X-Ray inspection in IC packaging. http://www.us-tech.com/RelId/701921/pagenum/4/ISvars/default/X-Ray_Inspection_in_IC_Packaging.htm. Accessed October, 21 2013.

  • Wu, C. H., Wang, D. Z., Ip, A., Wang, D. W., Chan, C. Y., & Wang, H. F. (2009). A particle swarm optimization approach for components placement inspection on printed circuit boards. Journal of Intelligent Manufacturing, 20(5), 535–549.

    Article  Google Scholar 

  • Yalamanchili, P., Christou, A., Martell, S., & Rust, C. (1994). CSAM sounds the warning for IC packaging defects. IEEE Circuits and Devices Magazine, 10(4), 36–41.

    Article  Google Scholar 

  • Yang, J. (1996). Non-destructive identification of defects in integrated circuit packages by scanning acoustic microscopy. Microelectronics Reliability, 36(9), 1291–1295.

    Article  Google Scholar 

  • Yang, J. C., & Sua, G. J. (2000). U.S. Patent No. 6,089,095. Washington, DC: U.S. Patent and Trademark Office.

  • Yun, J. P., Choi, S. H., Seo, B., & Kim, S. W. (2008). Real-time vision-based defect inspection for high-speed steel products. Optical Engineering, 47(7), 077204.

    Article  Google Scholar 

  • Yun, J. P., Choi, D. C., Jeon, Y. J., Park, C., & Kim, S. W. (2013). Defect inspection system for steel wire rods produced by hot rolling process. International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-013-5397-8.

Download references

Acknowledgments

This research is partially supported by the National Science Council, Taiwan, under Contract No. NSC 102-2218-E-131-002-.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ssu-Han Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SH., Perng, DB. Automatic optical inspection system for IC molding surface. J Intell Manuf 27, 915–926 (2016). https://doi.org/10.1007/s10845-014-0924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0924-5

Keywords

Navigation