Skip to main content
Log in

Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Unconventional machining processes (communally named advanced or modern machining processes) are widely used by manufacturing industries. These advanced machining processes allow producing complex profiles and high quality-products. However, several process parameters should be optimized to achieve this end. In this paper, the optimization of process parameters of two conventional and four advanced machining processes is investigated: drilling process, grinding process, abrasive jet machining, abrasive water jet machining, ultrasonic machining, and water jet machining, respectively. This research employed two bio-inspired algorithms called the cuckoo optimization algorithm and the hoopoe heuristic to optimize the machining control parameters of these processes. The obtained results are compared with other optimization algorithms described and applied in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Addeh, J., Ebrahimzadeh, A., Azarbad, M., & Ranaee, V. (2013). Statistical process control using optimized neural networks: A case study. ISA Transactions,. doi:10.1016/j.isatra.2013.07.018.

    Google Scholar 

  • Adnan, M. R. H., Sarkheyli, A., Zain, A. M., & Haron, H. (2013). Fuzzy logic for modeling machining process: A review. Artificial Intelligence Review,. doi:10.1007/s10462-012-9381-8.

  • Azizah, M., Zain, A. M., Bazin, N. E. N., & Udin, A. (2013). Cuckoo search algorithm for optimization problems—a literature review. Applied Mechanics and Materials, 421, 502–506.

    Article  Google Scholar 

  • Baraskar, S. S., Banwait, S. S., & Laroiya, S. C. (2013). Multiobjective optimization of electrical discharge machining process using a hybrid method. Materials and Manufacturing Processes, 28(4), 348–354.

  • Çaydas, U., & Hascalık, A. (2008). A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. Journal of Materials Processing Technology, 202(1–3), 574–582.

    Article  Google Scholar 

  • Chu, C. H., & Hsieh, H. T. (2012). Generation of reciprocating tool motion in 5-axis flank milling based on particle swarm optimization. Journal of Intelligent Manufacturing, 23(5), 1501–1509.

    Article  Google Scholar 

  • El-Dosuky, M. A., Rashad, M. Z., & Hamza, T. T. (2012). New hoopoe heuristic optimization. International Journal of Science and Advanced Technology, 2(9), 85–90.

    Google Scholar 

  • Gopal, A. V., & Rao, P. V. (2003). The optimisation of the grinding of silicon carbide with diamond wheels using genetic algorithms. International Journal of Advanced Manufacturing Technology, 22(7–8), 475–480.

    Article  Google Scholar 

  • Grzenda, M., Bustillo, A., & Zawistowski, P. (2012). A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling. Journal of Intelligent Manufacturing, 23(5), 1733–1743.

    Article  Google Scholar 

  • Jain, N. K., Jain, V. K., & Deb, K. (2007). Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms. International Journal of Machine Tools and Manufacture, 47(6), 900–919.

    Article  Google Scholar 

  • Johari, N. F., Zain, A. M., Mustaffa, N. H., & Udin, A. (2013). Firefly algorithm for optimization problem. Applied Mechanics and Materials, 421, 512–517.

    Article  Google Scholar 

  • Kamaruzaman, A. F., Zain, A. M., Yusuf, S. M., & Udin, A. (2013). Levy flight algorithm for optimization problems—a literature review. Applied Mechanics and Materials, 421, 496–501.

    Article  Google Scholar 

  • Kilickap, E., Huseyinoglu, M., & Yardimeden, A. (2011). Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. International Journal of Advanced Manufacturing Technology, 11(8), 79–88.

    Article  Google Scholar 

  • Kumar, J. (2013). Ultrasonic machining—a comprehensive review. Machining Science and Technology: An International Journal, 17(3), 325–379.

    Article  Google Scholar 

  • Lalchhuanvela, H., Doloi, B., & Bhattacharyya, B. (2012). Enabling and understanding ultrasonic machining of engineering ceramics using parametric analysis. Materials and Manufacturing Processes, 27(4), 443–448.

    Article  Google Scholar 

  • Lee, T. S., Ting, T. O., & Lin, Y. J. (2007). An investigation of grinding process optimization via evolutionary algorithms. In IEEE swarm intelligence symposium.

  • Lee, T. S., Ting, T. O., Lin, Y. J., & Htay, T. (2007). A particle swarm approach for grinding process optimization analysis. International Journal of Advanced Manufacturing Technology, 33(11–12), 1128–1135.

    Article  Google Scholar 

  • Liu, X. J., Yi, H., & Ni, Z. H. (2013). Application of ant colony optimization algorithm in process planning optimization. Journal of Intelligent Manufacturing, 24(1), 1–13.

    Article  Google Scholar 

  • Mani, A., & Patvardhan, C. (2010). Solving ceramic grinding optimization problem by adaptive quantum evolutionary algorithm. In IEEE international conference on intelligent systems, modelling and simulation.

  • Mellal, M. A., Adjerid, S., Williams, E. J., & Benazzouz, D. (2012). Optimal replacement policy for obsolete components using cuckoo optimization algorithm based-approach: Dependability context. Journal of Scientific and Industrial Research, 71(11), 715–721.

  • Mellal, M. A., Adjerid, S., & Williams, E. J. (2013). Optimal selection of obsolete tools in manufacturing systems using cuckoo optimization algorithm. Chemical Engineering Transactions, 33, 355–360.

    Google Scholar 

  • Mohamad, A., Zain, A. M., Bazin, N. E. N., & Udin, A. (2013). A process prediction model based on cuckoo algorithm for abrasive waterjet machining. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-013-0853-8.

  • Rabiee, M., & Sajedi, H. (2013). Job scheduling in grid computing with cuckoo optimization algorithm. International Journal of Computer Applications, 62(16), 38–44.

    Article  Google Scholar 

  • Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11(8), 5508–5518.

    Article  Google Scholar 

  • Rao, R. V. (2011). Modeling and optimization of modern machining processes. In Advanced modeling and optimization of manufacturing processes. (ch. 3, pp. 177–284). London: Springer.

  • Rao, R. V., Pawar, P. J., & Davim, J. P. (2010). Optimization of process parameters of mechanical type advanced machining processes using a simulated annealing algorithm. International Journal of Materials and Product Technology, 37(1–2), 83–101.

    Article  Google Scholar 

  • Rao, R. V., Pawar, P. J., & Davim, J. P. (2010). Parameter optimization of ultrasonic machining process using nontraditional optimization algorithms. Materials and Manufacturing Processes, 25(10), 1120–1130.

    Article  Google Scholar 

  • Rao, R. V., & Kalyankar, V. D. (2012). Parameter optimization of machining processes using a new optimization algorithm. Materials and Manufacturing Processes, 27(9), 978–985.

    Article  Google Scholar 

  • Rao, R. V., & Kalyankar, V. D. (2013). Parameter optimization of modern machining processes using teaching-learning based optimization algorithm. Engineering Applications of Artificial Intelligence, 26(1), 524–531.

    Article  Google Scholar 

  • Roozitalab, A., & Asgharizadeh, E. (2013). Optimizing the warranty period by cuckoo meta-heuristic algorithm in heterogeneous customers’ population. Journal of Industrial Engineering International, 9(27), 1–6.

    Google Scholar 

  • Sahab, A. R., Ziabari, M. T., & Modabbernia, M. R. (2012). A novel fractional-order hyperchaotic system with a quadratic exponential nonlinear term and its synchronization. Advances in Difference Equations, 2012, 1–21.

    Article  Google Scholar 

  • Wang, G., Wang, Y., Zhao, J., & Chen, G. (2012). Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm. Journal of Intelligent Manufacturing, 23(3), 365–374.

    Article  Google Scholar 

  • Yang, X. S. (2014). Cuckoo search, Chapter 9. In Nature-inspired optimization algorithms (pp. 129–139). Elsevier.

  • Yusoff, Y., Ngadiman, M. S., & Zain, A. M. (2011). Overview of NSGA-II for optimizing machining process parameters. Procedia Engineering, 15, 3978–3983.

    Article  Google Scholar 

  • Yusup, N., Sarkheyli, A., Zain, A. M., Hashim, S. Z. M., & Ithnin, N. (2013). Estimation of optimal machining control parameters using artificial bee colony. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0753-y.

  • Yusup, N., Zain, A. M., & Hashim, S. Z. M. (2012). Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011). Expert Systems with Applications, 39(10), 9909–9927.

    Article  Google Scholar 

  • Yusup, N., Zain, A. M., & Hashim, S. Z. M. (2012). Overview of PSO for optimizing process parameters of machining. Procedia Engineering, 29, 914–923.

  • Zahara, E., & Hu, C. (2008). Solving constrained optimization problems with hybrid particle swarm optimization. Engineering Optimization, 40(11), 1031–1049.

    Article  Google Scholar 

  • Zain, A. M., Haron, H., & Sharif, S. (2008). An overview of GA technique for surface roughness optimization in milling process, in ITSim 2008: International Symposium on Information Technology. Malaysia: Kuala Lumpur.

    Google Scholar 

  • Zain, A. M., Haron, H., & Sharif, S. (2011a). Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Systems with Applications, 38(7), 8316–8326.

  • Zain, A. M., Haron, H., & Sharif, S. (2011b). Genetic algorithm and simulated annealing to estimate optimal process parameters of the abrasive waterjet machining. Engineering with Computers, 27(3), 251–259.

  • Zain, A. M., Haron, H., & Sharif, S. (2011c). Optimization of process parameters in the abrasive waterjet machining using integrated SA–GA. Applied Soft Computing, 11(8), 5350–5359.

  • Zainal, N., Zain, A. M., Haizan, N., Radzi, M., & Udin, A. (2013). Glowworm swarm optimization (GSO) algorithm for optimization problems: A state-of-the-art review. Applied Mechanics and Materials, 421, 507–511.

    Article  Google Scholar 

  • Zhang, J. Y., Liang, S. Y., Yao, J., Chen, J. M., & Huang, J. L. (2006). Evolutionary optimization of machining processes. Journal of Intelligent Manufacturing, 17(2), 203–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Arezki Mellal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellal, M.A., Williams, E.J. Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic. J Intell Manuf 27, 927–942 (2016). https://doi.org/10.1007/s10845-014-0925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0925-4

Keywords

Navigation