Skip to main content
Log in

The use of improved TOPSIS method based on experimental design and Chebyshev regression in solving MCDM problems

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Decision makers today are faced with a wide range of alternative options and a large set of conflicting criteria. How to make trade-off between these conflicting attributes and make a scientific decision is always a difficult task. Although a lot of multiple criteria decision making (MCDM) methods are available to deal with selection applications, it’s observed that in most of these methods the ranking results are very sensitive to the changes in the attribute weights. The calculation process is also ineffective when a new alternative is added or removed from the MCDM problem. This paper presents an improved TOPSIS method based on experimental design and Chebyshev orthogonal polynomial regression. A feature of this method is that it employs the experimental design technique to assign the attribute weights and uses Chebyshev regression to build a regression model. This model can help and guide a decision maker to make a reasonable judgment easily. The proposed methodology is particularized through an equipment selection problem in manufacturing environment. Two more illustrative examples are conducted to demonstrate the applicability of the proposed method. In all the cases, the results obtained using the proposed method almost corroborate with those derived by the earlier researchers which proves the validity, capability and potentiality of this method in solving real-life MCDM problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AHP:

Analytic hierarchy process

DM:

Decision maker

DoE:

Design of experiment

ELECTRE:

Elimination et choice translating reality

IC:

Integrated circuit

MCDM:

Multiple criteria decision making

MM:

Milling machine

MOORA:

Multi-objective optimization on the basis of ratio analysis

PROMETHEE:

Preference ranking organization method for enrichment evaluation

SAW:

Simple additive weighting

TOPSIS:

Technique for order preference by similarity to ideal solution

VIKOR:

VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian

\(a_{i}\) :

Coefficient of the Chebyshev term \(T_{i}\)

\(A^{+}\) :

The positive ideal solution

\(A^{-}\) :

The negative ideal solution

\(A_{i}\) :

The \(i\hbox {th}\) alternative

\(C_{j}\) :

The \(j\hbox {th}\) criterion

\(D_{i}^{+}\) :

The distance between the \(i\hbox {th}\) alternative and the positive ideal solution

\(D_{i}^{-}\) :

The distance between the \(i\hbox {th}\) alternative and the negative ideal solution

\(m\) :

The number of alternatives for a certain MCDM problem

\(n\) :

The number of criteria for a certain MCDM problem

\(r_{ij}\) :

The normalized value of \(j\hbox {th}\) criterion for the \(i\hbox {th}\) alternative

\(T_{i}\) :

Chebyshev orthogonal polynomial term

\(v_{ij}\) :

The weighted normalized value of \(j\hbox {th}\) criterion for the \(i\hbox {th}\) alternative

\(w_{j}\) :

The weight value assigned to the \(j\hbox {th}\) criterion

W :

The weight set

\(x_{ij}\) :

The value of the \(j\hbox {th}\) criterion for the alternative \(A_{i}\)

X :

The decision matrix

\(y\) :

Response or TOPSIS score

References

  • Abo-Sinna, M. A., & Amer, A. H. (2005). Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Applied Mathematics and Computation, 162(1), 243–256. doi:10.1016/j.amc.2003.12.087.

    Article  Google Scholar 

  • Anojkumar, L., Ilangkumaran, M., & Sasirekha, V. (2014). Comparative analysis of MCDM methods for pipe material selection in sugar industry. Expert Systems with Applications, 41(6), 2964–2980. doi:10.1016/j.eswa.2013.10.028.

    Article  Google Scholar 

  • Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051–13069. doi:10.1016/j.eswa.2012.05.056.

    Article  Google Scholar 

  • Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The Promethee method. European Journal of Operational Research, 24(2), 228–238. doi:10.1016/0377-2217(86)90044-5.

    Article  Google Scholar 

  • Brauers, W. K. M., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 445.

    Google Scholar 

  • Chakraborty, S. (2011). Applications of the MOORA method for decision making in manufacturing environment. The International Journal of Advanced Manufacturing Technology, 54(9–12), 1155–1166.

    Article  Google Scholar 

  • Chen, Y., Li, K., Xu, H., & Liu, S. (2009). A DEA-TOPSIS method for multiple criteria decision analysis in emergency management. Journal of Systems Science and Systems Engineering, 18(4), 489–507. doi:10.1007/s11518-009-5120-3.

    Article  Google Scholar 

  • Chu, T.-C. (2002). Facility location selection using fuzzy TOPSIS under group decisions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(06), 687–701.

    Article  Google Scholar 

  • Dağdeviren, M. (2008). Decision making in equipment selection: An integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing, 19(4), 397–406. doi:10.1007/s10845-008-0091-7.

    Article  Google Scholar 

  • Dağdeviren, M., Yavuz, S., & Kılınç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems with Applications, 36(4), 8143–8151. doi:10.1016/j.eswa.2008.10.016.

    Article  Google Scholar 

  • Dean, A. M., & Voss, D. (1999). Design and analysis of experiments. Berlin: Springer.

    Book  Google Scholar 

  • Dolgin, V. P. (1996). Dynamic diagnostics of mechanical manufacturing systems. Journal of Mathematical Sciences, 82(2), 3316–3319. doi:10.1007/BF02363992.

    Article  Google Scholar 

  • Emenonye, C., & Chikwendu, C. (2014). CHEBYSHEV’S polynomial approximation of an N-warehouse stock allocation model in dynamic programming. International Journal of Engineering Innovations and Research, 3(1), 41–45.

    Google Scholar 

  • Frank, D., & Fadel, G. (1995). Expert system-based selection of the preferred direction of build for rapid prototyping processes. Journal of Intelligent Manufacturing, 6(5), 339–345. doi:10.1007/BF00124677.

    Article  Google Scholar 

  • Gautschi, W., Friedman, R. S., Burns, J., Darjee, R., & Mcintosh, A. (2004). Orthogonal polynomials: Computation and approximation, Numerical Mathematics and scientific Computation Series. Oxford: Oxford University Press.

    Google Scholar 

  • Hwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making. Berlin: Springer.

    Book  Google Scholar 

  • Jin, R., Chen, W., & Sudjianto, A. (2005). An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134(1), 268–287. doi:10.1016/j.jspi.2004.02.014.

    Article  Google Scholar 

  • Köksalan, M. M., Wallenius, J., & Zionts, S. (2011). Multiple criteria decision making: From early history to the 21st century. Singapore: World Scientific.

    Book  Google Scholar 

  • Karande, P., & Chakraborty, S. (2012). Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Materials & Design, 37, 317–324. doi:10.1016/j.matdes.2012.01.013.

    Article  Google Scholar 

  • Kirk, R. E. (1982). Experimental design. London: Wiley Online Library.

    Google Scholar 

  • Kuo, Y., Yang, T., & Huang, G.-W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computers & Industrial Engineering, 55(1), 80–93. doi:10.1016/j.cie.2007.12.002.

    Article  Google Scholar 

  • MacCrimmon, K. R. (1968). Decisionmaking among multiple-attribute alternatives: A survey and consolidated approach. DTIC Document.

  • Mason, J. C., & Handscomb, D. C. (2010). Chebyshev polynomials. Boca Raton: CRC Press.

    Google Scholar 

  • Mateo, J. R. S. C. (2012). Multi criteria analysis in the renewable energy industry. Berlin: Springer.

    Book  Google Scholar 

  • Önüt, S., Soner Kara, S., & Efendigil, T. (2008). A hybrid fuzzy MCDM approach to machine tool selection. Journal of Intelligent Manufacturing, 19(4), 443–453. doi:10.1007/s10845-008-0095-3.

    Article  Google Scholar 

  • Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5–21.

    Google Scholar 

  • Pasandideh, S., Niaki, S., & Hajipour, V. (2013). A multi-objective facility location model with batch arrivals: Two parameter-tuned meta-heuristic algorithms. Journal of Intelligent Manufacturing, 24(2), 331–348. doi:10.1007/s10845-011-0592-7.

    Article  Google Scholar 

  • Prado, R. V., Uquillas, B., Aguilar, J. Y., Aguilar, Y., & Casanova, F. (2010). Abrasive wear effect of sugarcane juice on sugarcane rolls. Wear, 270(1–2), 83–87. doi:10.1016/j.wear.2010.09.011.

    Article  Google Scholar 

  • Rao, R. V. (2007). Decision making in the manufacturing environment: Using graph theory and fuzzy multiple attribute decision making methods. Berlin: Springer.

    Google Scholar 

  • Rao, R. V., Patel, B. K., & Parnichkun, M. (2011). Industrial robot selection using a novel decision making method considering objective and subjective preferences. Robotics and Autonomous Systems, 59(6), 367–375. doi:10.1016/j.robot.2011.01.005.

    Article  Google Scholar 

  • Ross, P. J. (1995). Taguchi techniques for quality engineering (2nd ed’95).

  • Roy, B. (1968). Classement et choix en présence de points de vue multiples. RAIRO-Operations Research-Recherche Opérationnelle, 2(V1), 57–75.

  • Saaty, T. L. (1980). The analytical hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1994). Fundamentals of decision making and priority theory: With the analytic hierarchy process. Pittsburgh: Rws Publications.

    Google Scholar 

  • Sharma, S., & Balan, S. (2013). An integrative supplier selection model using Taguchi loss function, TOPSIS and multi criteria goal programming. Journal of Intelligent Manufacturing, 24(6), 1123–1130. doi:10.1007/s10845-012-0640-y.

    Article  Google Scholar 

  • Shih, H.-S., Shyur, H.-J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7–8), 801–813. doi:10.1016/j.mcm.2006.03.023.

    Article  Google Scholar 

  • Taguchi, G. (1987). Systems of experimental design: Engineering methods to optimize quality and minimize cost. White Plains, NJ: Quality Resources.

    Google Scholar 

  • Tsai, J.-T., Liu, T.-K., & Chou, J.-H. (2004). Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Transactions on Evolutionary Computation, 8(4), 365–377.

    Article  Google Scholar 

  • Wang, T.-C., & Chang, T.-H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), 870–880. doi:10.1016/j.eswa.2006.07.003.

    Article  Google Scholar 

  • Wesley, S. B., Goyal, H. S., & Mishra, S. C. (2012). Corrosion behavior of ferritic steel, austenitic steel and low carbon steel grades in sugarcane juice. Journal of Materials & Metallurgical Engineering, 2(1), 9–22.

    Google Scholar 

  • Wu, J., Luo, Z., Zhang, Y., & Zhang, N. (2014). An interval uncertain optimization method for vehicle suspensions using Chebyshev metamodels. Applied Mathematical Modelling, 38(15–16), 3706–3723. doi:10.1016/j.apm.2014.02.012.

    Article  Google Scholar 

  • Yang, T., & Kuo, C. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. European Journal of Operational Research, 147(1), 128–136. doi:10.1016/S0377-2217(02)00251-5.

    Article  Google Scholar 

  • Yu, J.-C., Krizan, S., & Ishii, K. (1993). Computer-aided design for manufacturing process selection. Journal of Intelligent Manufacturing, 4(3), 199–208. doi:10.1007/BF00123964.

    Article  Google Scholar 

  • Yurdakul, M., & Tansel İÇ, Y. (2009). Application of correlation test to criteria selection for multi criteria decision making (MCDM) models. The International Journal of Advanced Manufacturing Technology, 40(3–4), 403–412. doi:10.1007/s00170-007-1324-1.

    Article  Google Scholar 

  • Zhang, X., Zhang, H., He, X., Xu, M., & Jiang, X. (2013). Chebyshev fitting of complex surfaces for precision metrology. Measurement, 46(9), 3720–3724. doi:10.1016/j.measurement.2013.04.017.

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to the editor and the anonymous referees for their insightful and constructive comments and suggestions, which have been very helpful for improving this paper. This research was supported by the National Natural Science Foundation of China (Grant No. 51375389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhu, Z. & Huang, S. The use of improved TOPSIS method based on experimental design and Chebyshev regression in solving MCDM problems. J Intell Manuf 28, 229–243 (2017). https://doi.org/10.1007/s10845-014-0973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0973-9

Keywords

Navigation