Skip to main content
Log in

Credibilistic clustering algorithms via alternating cluster estimation

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Credibilistic clustering is a new clustering method using the credibility measure in fuzzy clustering. Zhou et al. (2014) presented the clustering model of credibilistic clustering together with a credibilistic clustering algorithm for solving the optimization model. In this paper, a further investigation on credibilistic clustering is made. Within the solution architecture of alternating cluster estimation, a family of general credibilistic clustering algorithms are designed for solving the credibilistic clustering model. Moreover, a new credibilistic clustering algorithm is recommended for the real applications. Numerical examples based on randomly generated data sets and real data sets are presented to illustrate the performance and effectiveness of the credibilistic clustering algorithms from different aspects. Results comparing with the fuzzy \(c\)-means algorithm and the possibilistic clustering algorithms show that the proposed credibilistic clustering algorithms can survive from the coincident problem and the noisy environments, and provide the clustering results with high overall accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press.

    Book  Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis, forecasting and control. San Francisco: Holden-Day.

    Google Scholar 

  • Cardoso, M. G. M. S., & Moutinho, L. (2003). Measurement and analysis for marketing. Journal of Targeting, 12(1), 27–41.

    Google Scholar 

  • Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P. A., Lukasik, S., & Zak, S. (2010). Complete gradient clustering algorithm for features analysis of X-ray images. In E. Pietka & J. Kawa (Eds.), Information technologies in biomedicine (pp. 15–24). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chen, X., & Ralescu, D. A. (2012). B-spline method of uncertain statistics with applications to estimate travel distance. Journal of Uncertain Systems, 6(4), 256–262.

    Google Scholar 

  • Cordon, O., Herrera, F., & Sanchez, L. (1999). Solving electrical distribution problems using hybrid evolutionary data analysis techniques. Applied Intelligence, 10(1), 5–24.

    Article  Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.

    Article  Google Scholar 

  • Forina, M., Leardi, R., Armanino, C., & Lanteri, S. (1988). An extendable package of programs for data exploration, classification and correlation. Amsterdam: Elsevier.

    Google Scholar 

  • Kahraman, H. T., Sagiroglu, S., & Colak, I. (2013). The development of intuitive knowledge classifier and the modeling of domain dependent data. Knowledge-Based Systems, 37, 283–295.

    Article  Google Scholar 

  • Krishnapuram, R., & Keller, J. M. (1993). A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1(2), 98–110.

    Article  Google Scholar 

  • Krishnapuram, R., & Keller, J. M. (1996). The possibilistic \(c\)-means algorithm: Insights and recommendations. IEEE Transactions on Fuzzy Systems, 4(3), 385–393.

    Article  Google Scholar 

  • Li, X., & Liu, B. (2006). A sufficient and necessary condition for credibility measures. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 14(5), 527–535.

    Article  Google Scholar 

  • Li, X., & Lo, H. K. (2014). An energy-efficient scheduling and speed control approach for metro rail operations. Transportation Research Part B, 64, 73–89.

    Article  Google Scholar 

  • Li, X., Qin, Z., & Kar, S. (2010). Mean-variance-skewness model for portfolio selection with fuzzy returns. European Journal of Operational Research, 202(1), 239–247.

    Article  Google Scholar 

  • Li, X., Wong, H. S., & Wu, S. (2012). A fuzzy minimax clustering model and its applications. Information Sciences, 186(1), 114–125.

    Article  Google Scholar 

  • Liu, B. (2002a). Toward fuzzy optimization without mathematical ambiguity. Fuzzy Optimization and Decision Making, 1(1), 43–63.

    Article  Google Scholar 

  • Liu, B. (2002b). Theory and practice of uncertain programming. Heidelberg: Physica-Verlag.

    Book  Google Scholar 

  • Liu, B. (2004). Uncertainty theory: An introduction to its axiomatic foundations. Berlin: Springer.

    Book  Google Scholar 

  • Liu, B. (2006). A survey of credibility theory. Fuzzy Optimization and Decision Making, 5(4), 387–408.

    Article  Google Scholar 

  • Liu, B., & Liu, Y. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445–450.

    Article  Google Scholar 

  • Liu, W. Y., & Jiang, J. L. (2014). A new Chinese character recognition approach based on the fuzzy clustering analysis. Neural Computing & Applications, 25(2), 421–428.

    Article  Google Scholar 

  • Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197(4300), 287–289.

  • Nahmias, S. (1978). Fuzzy variables. Fuzzy Sets and Systems, 1(2), 97–110.

    Article  Google Scholar 

  • Ni, Y., & Zhao, Z. (2014). Two-agent scheduling problem under fuzzy environment. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0992-6

  • Quah, C. H. (2014). Revisiting business cycles in the Eurozone: A fuzzy clustering and discriminant approach. Acta Oeconomica, 64(2), 161–180.

  • Runkler, T. A., & Bezdek, J. C. (1999). Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Transactions on Fuzzy Systems, 7(4), 377–393.

    Article  Google Scholar 

  • Singh, A. K., & Purohit, N. (2014). An optimised fuzzy clustering for wireless sensor networks. International Journal of Electronics, 101(8), 1027–1041.

    Article  Google Scholar 

  • Tjhi, W. C., & Chen, L. (2007). Possibilistic fuzzy co-clustering of large document collections. Pattern Recognition, 40(12), 3452–3466.

    Article  Google Scholar 

  • Wang, C. H., & Kuo, W. (2007). Identification of control chart patterns using wavelet filtering and robust fuzzy clustering. Journal of Intelligent Manufacturing, 18(3), 343–350.

    Article  Google Scholar 

  • Wang, Q., Zhou, J., & Hung, C. C. (2014). A general framework for constructing possibilistic membership functions in alternating cluster estimation. International Journal of Innovative Computing, Information and Control, 10(6), 2035–2049.

    Google Scholar 

  • Wen, P., Zhou, J., & Zheng, L. (2008). Hybrid methods of spatial credibilistic clustering and particle swarm optimization in high noise image segmentation. International Journal of Fuzzy Systems, 10(3), 174–184.

    Google Scholar 

  • Wen, P., Zhou, J., & Zheng, L. (2011). A modified hybrid method of spatial credibilistic clustering and particle swarm optimization. Soft Computing, 15(5), 855–865.

    Article  Google Scholar 

  • Yang, M. S., & Wu, K. L. (2006). Unsupervised possibilistic clustering. Pattern Recognition, 39(1), 5–21.

    Article  Google Scholar 

  • Yang, X., & Gao, J. (2013). Uncertain differential games with application to capitalism. Journal of Uncertainty Analysis and Applications, 1(1), 17.

    Article  Google Scholar 

  • Yao, K., & Li, X. (2012). Uncertain alternating renewal process and its application. IEEE Transactions on Fuzzy Systems, 20(6), 1154–1160.

    Article  Google Scholar 

  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1), 3–28.

    Article  Google Scholar 

  • Zadeh, L. A. (1979). A theory of approximate reasoning. In J. Hayes, D. Michie, & R. M. Thrall (Eds.), Mathematical Frontiers of the Social and Policy Sciences (pp. 69–129). Boulder, CO: Westview Press.

    Google Scholar 

  • Zhou, J., Cao, L., & Yang, N. (2013). On the convergence of some possibilistic clustering algorithms. Fuzzy Optimization and Decision Making, 12(4), 415–432.

    Article  Google Scholar 

  • Zhou, J., & Hung, C. C. (2007). A generalized approach to possibilistic clustering algorithms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(Suppl 2), 117–138.

    Article  Google Scholar 

  • Zhou, J., Wang, Q., Hung, C. C., & Yang, F. (2014). Credibilistic clustering: The model and algorithms. Technical report.

Download references

Acknowledgments

This work was supported by grants from the Innovation Program of Shanghai Municipal Education Commission (No. 13ZS065), the Shanghai Philosophy and Social Science Planning Project (No. 2012BGL006), and the National Social Science Foundation of China (No. 13CGL057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Cheng Hung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wang, Q., Hung, CC. et al. Credibilistic clustering algorithms via alternating cluster estimation. J Intell Manuf 28, 727–738 (2017). https://doi.org/10.1007/s10845-014-1004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-1004-6

Keywords

Navigation