Skip to main content

Advertisement

Log in

Bi-objective mixed-integer nonlinear programming for multi-commodity tri-echelon supply chain networks

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The competitive market and declined economy have increased the relevant importance of making supply chain network efficient. Up to now, this has resulted in great motivations to reduce the cost of services, and simultaneously, to improve their quality. A mere network model, as a tri-echelon, consists of Suppliers, Warehouses or Distribution Centers (DCs), and Retailer nodes. To bring it closer to reality, the majority of parameters in this network involve retailer demands, lead-time, warehouses holding and shipment costs, and also suppliers procuring and stocking costs which are all assumed to be stochastic. The aim is to determine the optimum service level so that total cost is minimized. Obtaining such conditions requires determining which supplier nodes, and which DC nodes in network should be active to satisfy the retailers’ needs, an issue which is a network optimization problem per se. The proposed supply chain network for this paper is formulated as a mixed-integer nonlinear programming, and to solve this complicated problem, since the literature for the related benchmark is poor, three numbers of genetic algorithm called Non-dominated Sorting Genetic Algorithm (NSGA-II), Non-dominated Ranking Genetic Algorithm (NRGA), and Pareto Envelope-based Selection Algorithm (PESA-II) are applied and compared to validate the obtained results. The Taguchi method is also utilized for calibrating and controlling the parameters of the applied triple algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. K ey P erformance I ndicator.

  2. M ixed- I nteger N onlinear P rogramming.

  3. N on- D ominated S orting G enetic A lgorithm.

  4. N on- D ominated R anking G enetic A lgorithm.

  5. P areto E nvelope- B ased S election A lgorithm.

  6. D esign o f E xperiments.

  7. R eliable F acility L ocation P roblem.

  8. A nt C olony.

  9. T abu S earch.

  10. M ulti- O bjective H ybrid P article S warm O ptimization.

  11. B alanced S upply C hain N etwork.

  12. S ome M ulti- C riteria D ecision M aking.

  13. S ingle- O bjective E volutionary A lgorithm.

  14. G enetic A lgorithm.

  15. P article S warm O ptimization.

  16. S imulated A nnealing.

  17. H armony S earch A lgorithm.

  18. I mperialist C ompetition A lgorithm.

  19. M ulti- O bjective E volutionary A lgorithm.

  20. K nowledge- B ased G enetic A lgorithm.

  21. L agrangian H euristic A pproach.

  22. R anked- B ased R oulette W heel

  23. P areto- B ased P opulation- R anking A lgorithm.

  24. S ignal-to- N oise.

References

  • Al Jadaan, O., Rao, C., & Rajamani, L. (2006). Parametric study to enhance genetic algorithm performance, using ranked based roulette wheel selection method. In International conference on multidisciplinary information sciences and technology (InSciT2006), pp. 274–278.

  • Al Jadaan, O., Rajamani, L., & Rao, C. (2009). Non-dominated ranked genetic algorithm for solving constrained multi-objective optimization problems. Journal of Theoretical & Applied Information Technology, 5, 640–651.

    Google Scholar 

  • Alavidoost, M. H., & Nayeri, M. A. (2014). Proposition of a hybrid NSGA-II algorithm with fuzzy objectives for bi-objective assembly line balancing problem. In Tenth international industrial engineering conference.

  • Alavidoost, M. H., Tarimoradi, M., & Zarandi, M. H. F. (2015). Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problems. Applied Soft Computing, 34, 655–677.

    Article  Google Scholar 

  • Alavidoost, M., Zarandi, M. F., Tarimoradi, M., & Nemati, Y. (2014). Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times. Journal of Intelligent Manufacturing, 6, 1–24.

    Google Scholar 

  • Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 51, 196–215.

    Article  Google Scholar 

  • Amiri, A. (2006). Designing a distribution network in a supply chain system: Formulation and efficient solution procedure. European Journal of Operational Research, 171, 567–576.

    Article  Google Scholar 

  • Azapagic, A., & Clift, R. (1999). The application of life cycle assessment to process optimisation. Computers & Chemical Engineering, 23, 1509–1526.

    Article  Google Scholar 

  • Bandyopadhyay, S., & Bhattacharya, R. (2014). Solving a tri-objective supply chain problem with modified NSGA-II algorithm. Journal of Manufacturing Systems, 33, 41–50.

    Article  Google Scholar 

  • Cardona-Valdés, Y., Álvarez, A., & Pacheco, J. (2014). Metaheuristic procedure for a bi-objective supply chain design problem with uncertainty. Transportation Research Part B: Methodological, 60, 66–84.

    Article  Google Scholar 

  • Chen, Z.L.(2004). Integrated production and distribution operations: Taxonomy, models, and review, International serues in operations research and management science, pp. 711–746.

  • Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28, 1131–1144.

    Article  Google Scholar 

  • Cheshmehgaz, H. R., Desa, M. I., & Wibowo, A. (2013). A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. Journal of Intelligent Manufacturing, 24, 277–293.

    Article  Google Scholar 

  • Church, R. L., & ReVelle, C. S. (1976). Theoretical and computational links between the p-median. Location Set-covering, and the Maximal Covering Location Problem, Geographical Analysis, 8, 406–415.

    Google Scholar 

  • Corne, D. W., Jerram, N. R., Knowles, J. D., Oates, M. J.: PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the genetic and evolutionary computation conference (GECCO’2001.

  • Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lecture Notes in Computer Science, 1917, 849–858.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

    Article  Google Scholar 

  • Fattahi, P., Hajipour, V., & Nobari, A. (2015). A bi-objective continuous review inventory control model: Pareto-based meta-heuristic algorithms. Applied Soft Computing, 32, 211–223.

    Article  Google Scholar 

  • Gebennini, E., Gamberini, R., & Manzini, R. (2009). An integrated production-distribution model for the dynamic location and allocation problem with safety stock optimization. International Journal of Production Economics, 122, 286–304.

    Article  Google Scholar 

  • Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system design by Benders decomposition. Management Science, 20, 822–844.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

  • Graves, S. C., & Willems, S. P. (2005). Optimizing the supply chain configuration for new products. Management Science, 51, 1165–1180.

    Article  Google Scholar 

  • Hajipour, V., Kheirkhah, A., Tavana, M., & Absi, N. (2015). Novel Pareto-based meta-heuristics for solving multi-objective multi-item capacitated lot-sizing problems. The International Journal of Advanced Manufacturing Technology, 4, 1–15.

    Google Scholar 

  • Hajipour, V., Khodakarami, V., & Tavana, M. (2014). The redundancy queuing-location-allocation problem: A novel approach. IEEE Transactions on Engineering Management, 61, 534– 544.

    Article  Google Scholar 

  • Hajipour, V., Rahmati, S. H. A., Pasandideh, S. H. R., & Niaki, S. T. A. (2014). A multi-objective harmony search algorithm to optimize multi-server location-allocation problem in congested systems. Computers & Industrial Engineering, 72, 187–197.

    Article  Google Scholar 

  • Handfield, R. B., & Nichols, E. L. (1999). Introduction to supply chain management (Vol. 183). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. New Jersey: Wiley-Interscience.

    Google Scholar 

  • Hwang, C.-L., Masud, A. S. M., Paidy, S. R., & Yoon, K. P. (1979). Multiple objective decision making, methods and applications: A state-of-the-art survey. Berlin: Springer.

    Book  Google Scholar 

  • Jamshidi, R., Fatemi Ghomi, S. M. T., & Karimi, B. (2012). Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Scientia Iranica, 19, 1876–1886.

    Article  Google Scholar 

  • Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. In Proceedings of the 2002 congress on evolutionary computation. CEC’02, pp. 711–716.

  • Kopanos, G. M., Laínez, J. M., & Puigjaner, L. (2009). An efficient mixed-integer linear programming scheduling framework for addressing sequence-dependent setup issues in batch plants. Industrial & Engineering Chemistry Research, 48, 6346–6357.

    Article  Google Scholar 

  • Marufuzzaman, M., Eksioglu, S. D., & Huang, Y. (2014). Two-stage stochastic programming supply chain model for biodiesel production via wastewater treatment. Computers & Operations Research, 49, 1–17.

    Article  Google Scholar 

  • Mirchandani, P. B., & Francis, R. L. (1990). Discrete location theory.

  • Mohammadi Bidhandi, H., & Mohd Yusuff, R. (2011). Integrated supply chain planning under uncertainty using an improved stochastic approach. Applied Mathematical Modelling, 35, 2618–2630.

    Article  Google Scholar 

  • Moncayo-Martínez, L. A., & Zhang, D. Z. (2011). Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design. International Journal of Production Economics, 131, 407–420.

    Article  Google Scholar 

  • Montgomery, D. C. (2008). Design and analysis of experiments. New Jersey: Wiley.

    Google Scholar 

  • Mosahar, T., Fazel Zarandi, M. H., & Türksen, I. B. (2014). Hybrid intelligent agent-based internal analysis architecture for CRM strategy planning. International Journal of Intelligent Systems and Applications, 6, 1–20.

    Google Scholar 

  • Mousavi, S. M., Bahreininejad, A., Musa, S. N., & Yusof, F. (2014). A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network. Journal of Intelligent Manufacturing, 1, 1–16.

    Google Scholar 

  • Murthy, D. N. P., Solem, O., & Roren, T. (2004). Product warranty logistics: Issues and challenges. European Journal of Operational Research, 156, 110–126.

    Article  Google Scholar 

  • Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A., & Roshanaei, V. (2009). An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness. Expert Systems with Applications, 36, 9625–9633.

    Article  Google Scholar 

  • Nozick, L. K., & Turnquist, M. A. (2001). Inventory, transportation, service quality and the location of distribution centers. European Journal of Operational Research, 129, 362–371.

    Article  Google Scholar 

  • Prakash, A., Chan, F. T. S., Liao, H., & Deshmukh, S. G. (2012). Network optimization in supply chain: A KBGA approach. Decision Support Systems, 52, 528–538.

    Article  Google Scholar 

  • Rabiee, M., Zandieh, M., & Ramezani, P. (2012). Bi-objective partial flexible job shop scheduling problem: NSGA-II. NRGA, MOGA and PAES Approaches, International Journal of Production Research, 50, 7327–7342.

    Article  Google Scholar 

  • Rahmati, S. H. A., Hajipour, V., & Niaki, S. T. A. (2013). A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem. Applied Soft Computing, 13, 1728–1740.

    Article  Google Scholar 

  • Rogers, D. S., & Leuschner, R. (2004). Supply chain management: Retrospective and prospective. Journal of Marketing Theory and Practice, 4, 60–65.

    Article  Google Scholar 

  • Ruiz, R., Maroto, C., & Alcaraz, J. (2006). Two new robust genetic algorithms for the flowshop scheduling problem. Omega, 34, 461–476.

    Article  Google Scholar 

  • Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28, 581–598.

    Article  Google Scholar 

  • Shankar, B. L., Basavarajappa, S., Chen, J. C., & Kadadevaramath, R. S. (2013). Location and allocation decisions for multi-echelon supply chain network-a multi-objective evolutionary approach. Expert Systems with Applications, 40, 551–562.

    Article  Google Scholar 

  • Shen, Z.-J. M., Coullard, C., & Daskin, M. S. (2003). A joint location-inventory model. Transportation Science, 37, 40–55.

    Article  Google Scholar 

  • Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2003). Designing and managing the supply chain: Concepts, strategies, and case studies. Irwin: McGraw-Hill.

    Google Scholar 

  • Snyder, L. V. (2006). Facility location under uncertainty: A review. IIE Transactions, 38, 547–564.

    Article  Google Scholar 

  • Sourirajan, K., Ozsen, L., & Uzsoy, R. (2009). A genetic algorithm for a single product network design model with lead time and safety stock considerations. European Journal of Operational Research, 197, 599–608.

    Article  Google Scholar 

  • Sridharan, R. (1995). The capacitated plant location problem. European Journal of Operational Research, 87, 203–213.

    Article  Google Scholar 

  • Taguchi, G. (1986). Introduction to quality engineering: Designing quality into products and processes.

  • Tan, K. C., Lee, T. H., & Khor, E. F. (2002). Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. Artificial Intelligence Review, 17, 251–290.

    Article  Google Scholar 

  • Tsai, C.-F., & Chao, K.-M. (2009). Chromosome refinement for optimising multiple supply chains. Information Sciences, 179, 2403–2415.

    Article  Google Scholar 

  • Van Landeghem, H., & Vanmaele, H. (2002). Robust planning: A new paradigm for demand chain planning. Journal of operations management, 20, 769–783.

    Article  Google Scholar 

  • Wang, K.-J., Makond, B., & Liu, S. Y. (2011). Location and allocation decisions in a two-echelon supply chain with stochastic demand - A genetic-algorithm based solution. Expert Systems with Applications, 38, 6125–6131.

    Article  Google Scholar 

  • Warszawski, A., & Peer, S. (1973). Optimizing the location of facilities on a building site. Journal of the Operational Research Society, 24, 35–44.

    Article  Google Scholar 

  • Zegordi, S. H., Abadi, I. N. K., & Nia, M. A. B. (2010). A novel genetic algorithm for solving production and transportation scheduling in a two-stage supply chain. Computers & Industrial Engineering, 58, 373–381.

    Article  Google Scholar 

  • Zhou, Z., Cheng, S., & Hua, B. (2000). Supply chain optimization of continuous process industries with sustainability considerations. Computers & Chemical Engineering, 24, 1151–1158.

    Article  Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3, 257–271.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the time and consideration the anonymous reviewer spent in this manuscript. Taking care of the comments significantly improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosahar Tarimoradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavidoost, M.H., Tarimoradi, M. & Zarandi, M.H.F. Bi-objective mixed-integer nonlinear programming for multi-commodity tri-echelon supply chain networks. J Intell Manuf 29, 809–826 (2018). https://doi.org/10.1007/s10845-015-1130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1130-9

Keywords

Navigation