Skip to main content

Advertisement

Log in

A bi-objective genetic algorithm for intelligent rehabilitation scheduling considering therapy precedence constraints

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The rehabilitation inpatients in hospitals often complain about the service quality due to the long waiting time between the therapeutic processes. To enhance service quality, this study aims to propose an intelligent solution to reduce the waiting time through solving the rehabilitation scheduling problem. In particular, a bi-objective genetic algorithm is developed for rehabilitation scheduling via minimizing the total waiting time and the makespan. The conjunctive therapy concept is employed to preserve the partial precedence constraints between the therapies and thus the present rehabilitation scheduling problem can be formulated as an open shop scheduling problem, in which a special decoding algorithm is designed. We conducted an empirical study based on real data collected in a general hospital for validation. The proposed approach considered both the hospital operational efficiency and the patient centralized service needs. The results have shown that the waiting time of each inpatient can be reduced significantly and thus demonstrated the practical viability of the proposed bi-objective heuristic genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Brunner, J. O., Bard, J. F., & Kolisch, R. (2009). Flexible shift scheduling of physicians. Health Care Management Science, 12, 285–305.

    Article  Google Scholar 

  • Chamnanlor, C., Sethanan, K., Chien, C.-F., & Gen, M. (2014). Re-entrant flow shop scheduling problem with time windows using hybrid genetic algorithm based on auto-tuning strategy. International Journal of Production Research, 52(9), 2612–2629.

    Article  Google Scholar 

  • Chan, C.-L., Huang, H.-T., & You, H.-J. (2012). Intelligence modeling for coping strategies to reduce emergency department overcrowding in hospitals. Journal of Intelligent Manufacturing, 23, 2307–2318.

    Article  Google Scholar 

  • Cheang, B., Li, H., Lim, A., & Rodrigues, B. (2003). Nurse rostering problems–A bibliographic survey. European Journal of Operation Research, 151, 447–460.

    Article  Google Scholar 

  • Chekuri, C., & Motwani, R. (1999). Precedence constraints scheduling to minimize sum of weighted completion times on a single machine. Discrete Applied Mathematics, 98, 29–38.

    Article  Google Scholar 

  • Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job-shop scheduling problems using genetic algorithms: Part I. Representation. Computers & Industrial Engineering, 30, 983–997.

    Article  Google Scholar 

  • Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial survey of job-shop scheduling problems using genetic algorithms: Part II. Hybrid genetic search strategies. Computers & Industrial Engineering, 36, 343–364.

    Article  Google Scholar 

  • Chien, C.-F., & Chen, C.-H. (2007a). Using genetic algorithm and coloured timed Petri net for modelling the optimization-based schedule generator of a generic production scheduling system. International Journal of Production Research, 45, 1763–1789.

    Article  Google Scholar 

  • Chien, C.-F., & Chen, C.-H. (2007b). A novel timetabling algorithm for a furnace process for semiconductor fabrication with constrained waiting and frequency-based setups. OR Spectrum, 29, 391–419.

    Article  Google Scholar 

  • Chien, C.-F., Tseng, F.-P., & Chen, C.-H. (2008). An evolutionary approach to rehabilitation patient scheduling: A case study. European Journal of Operation Research, 189, 1234–1253.

    Article  Google Scholar 

  • Chien, C.-F., Huang, Y.-C., & Hu, C.-H. (2009). A hybrid approach of data mining and genetic algorithms for rehabilitation scheduling. International Journal of Manufacturing Technology and Management, 16, 76–100.

    Article  Google Scholar 

  • Chou, C.-W., Chien, C.-F., & Gen, M. (2014). A multiobjective hybrid genetic algorithm for TFT-LCD module assembly scheduling. IEEE Transactions on Automation Science and Engineering, 11(3), 692–705.

    Article  Google Scholar 

  • Coello, C. A. C. (2002). Theoretical and constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191, 1245–1287.

    Article  Google Scholar 

  • Costa, A., Cappadonna, F. A., & Fichera, S. (2015). A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1049-1.

  • Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, 7, 205–230.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

    Article  Google Scholar 

  • Ergul, E. U., & Eminoglu, I. (2014). DOPGA: A new fitness assignment scheme for multi-objective evolutionary algorithms. International Journal of Systems Science, 45, 407–426.

    Article  Google Scholar 

  • Falkenauer, E., & Bouffouix, S. (1991). A genetic algorithm for job shop. Proceedings of the 1991 IEEE international conference on robotics and automation (Vol. 1, pp. 824–829).

  • Fan, J., & Feng, D. (2013). Design of cellular manufacturing system with quasi-dynamic dual resource using multi-objective GA. International Journal of Production Research, 51, 4134–4154.

    Article  Google Scholar 

  • Gao, J., Gen, M., & Zhao, X. (2007). A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Computers & Industrial Engineering, 53, 149–162.

    Article  Google Scholar 

  • Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization. New York: Wiley.

    Google Scholar 

  • Gen, M., Cheng, R., & Lin, L. (2008). Network models and optimization: Multiobjective genetic algorithm approach. London: Springer.

    Google Scholar 

  • Gen, M., & Lin, L. (2012). Multiobjective genetic algorithm for scheduling problem in manufacturing systems. Industrial Engineering & Management Systems, 11, 310–330.

    Article  Google Scholar 

  • Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: State-of-the-art survey. Journal of Intelligent Manufacturing, 25, 849–866.

    Article  Google Scholar 

  • Gen, M., Tsujimura, Y., & Kubota, E. (1994). Solving job-shop scheduling problems by genetic algorithm. IEEE International Conference on Systems, Man, and Cybernetics, & Humans, Information and Technology, 2, 1578–1582.

    Google Scholar 

  • Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of the ACM, 23, 665–679.

    Article  Google Scholar 

  • Guerriero, F., & Guido, R. (2011). Operational research in the management of the operating theatre: A survey. Health Care Management Science, 14, 89–114.

    Article  Google Scholar 

  • Huang, Y.-C., Zheng, J.-N., & Chien, C.-F. (2012). Decision support system for rehabilitation scheduling to enhance the service quality and the effectiveness of hospital resource management. Journal of the Chinese Institute of Industrial Engineers, 29, 348–363.

    Article  Google Scholar 

  • Jamrus, T., Chien, C.-F., Gen, M., & Sethanan, K. (2015). Multistage production distribution under uncertain demands with integrated discrete particle swarm optimization and extended priority-based hybrid genetic algorithm. Fuzzy Optimization and Decision Making, 14(3), 265–287.

    Article  Google Scholar 

  • Liaw, C.-F. (2000). A hybrid genetic algorithm for the open shop scheduling problem. European Journal of Operation Research, 124, 28–42.

  • Lin, L., Hao, X.-C., Gen, M., & Jo, J. (2012). Network modelling and evolutionary optimization for scheduling in manufacturing. Journal of Intelligent Manufacturing, 23, 2237–2253.

    Article  Google Scholar 

  • Lu, P.-H., Wu, M.-C., Tan, H., Peng, Y.-H., & Chen, C.-F. (2015). A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1083-z.

  • Ogulata, S. N., Koyuncu, M., & Karakas, E. (2008). Personnel and patient scheduling in the high demanded hospital services: A case study in the physiotherapy service. Journal of Medical Systems, 32, 221–228.

    Article  Google Scholar 

  • Prins, C. (2000). Competitive genetic algorithms for the open-shop scheduling problem. Mathematical Methods of Operations Research, 52, 389–411.

    Article  Google Scholar 

  • Ramudhin, A., & Marier, P. (1996). The generalized shifting bottleneck procedure. European Journal of Operation Research, 93, 34–48.

    Article  Google Scholar 

  • Schimmelpfeng, K., Helber, S., & Kasper, S. (2012). Decision support for rehabilitation hospital scheduling. OR Spectrum, 34, 461–489.

    Article  Google Scholar 

  • Shao, Y., Bard, J. F., & Jarrah, A. I. (2012). The therapist routing and scheduling problem. IIE Transactions, 44, 868–893.

    Article  Google Scholar 

  • Srinivas, N., & Deb, K. (1994). Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, 2, 221–248.

    Article  Google Scholar 

  • Uzsoy, R., Martin-Vega, L., Lee, C., & Leonard, P. (1991). Production scheduling algorithms for a semiconductor test facility. IEEE Transactions on Semiconductor Manufacturing, 4, 270–280.

    Article  Google Scholar 

  • Wu, J.-Z., Chien, C.-F., & Gen, M. (2012a). Coordinating strategic outsourcing decisions for semiconductor assembly using a bi-objective genetic algorithm. International Journal of Production Research, 50, 235–260.

  • Wu, J.-Z., Hao, X.-C., Chien, C.-F., & Gen, M. (2012b). A novel bi-vector encoding genetic algorithm for the simultaneous multiple resources scheduling problem. Journal of Intelligent Manufacturing, 23, 2255–2270.

    Article  Google Scholar 

  • Yao, S., Jiang, Z., Li, N., Geng, N., & Liu, X. (2011). A decentralized multi-objective scheduling methodology for semiconductor manufacturing. International Journal of Production Research, 49, 7227–7252.

    Article  Google Scholar 

  • Yu, X., & Gen, M. (2010). Introduction to Evolutionary Algorithms. London: Springer.

    Book  Google Scholar 

  • Zhang, W., Lin, L., Gen, M., & Chien, C.-F. (2012). Hybrid sampling strategy-based multiobjective evolutionary algorithm. Procedia Computer Science, 12, 96–101.

    Article  Google Scholar 

  • Zhang, W., Gen, M., & Jo, J. (2014). Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and scheduling problem. Journal of Intelligent Manufacturing, 25(5), 881–897.

    Article  Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3, 257–271.

    Article  Google Scholar 

  • Zitzler, E., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Technical report 103, Computer Engineering and Communication Networks Lab (TIK).

Download references

Acknowledgments

This research is supported by Ministry of Science and Technology, Taiwan (NSC 102-2221-E-007-057-MY3; MOST103-2218-E-007-023; MOST104-2911-I-007-502), National Natural Science Foundation of China (#71271068), and the Japan Society of Promotion of Science: Grant-in-Aid for Scientific Research under AQ1 Grant 24510219.0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Fu Chien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Chien, CF. & Gen, M. A bi-objective genetic algorithm for intelligent rehabilitation scheduling considering therapy precedence constraints. J Intell Manuf 29, 973–988 (2018). https://doi.org/10.1007/s10845-015-1149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1149-y

Keywords

Navigation