Skip to main content
Log in

Contribution of angular measurements to intelligent gear faults diagnosis

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Currently, work on the automation of vibration diagnosis is mainly based on indicators extracted from Time sampled Acceleration signals. There are other attractive alternatives such as those based on Angle synchronized measurements, which can provide a considerable number of more relevant and diverse indicators and, thus, lead to better performance in gear fault classification. The diversity of angular measurements (Instantaneous Angular Speed, Transmission Error and Angular sampled Acceleration) represents potential sources of relevant information in fault detection and diagnosis systems. These complementary measurements of existing signals or new relevant signals allow the construction of Feature Vector (FV) offering robust and effective classification methods even for different or non-stationary running speed conditions. In this paper, we propose to build several FVs based on indicators derived from the angular techniques to compare them to the ones calculated from the time signals, proving their superior performance in detection and identification of gear faults. It will be a question to demonstrate the effectiveness of angular indicators in increasing classification performances, using a supervised classifier based on Artificial Neural Networks and thus determining the most suitable signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • André, H., Antoni, J., Daher, Z., & Rémond, D. (2010). Comparison between angular sampling and angular resampling methods applied on the vibration monitoring of a gear meshing in non stationary conditions. In Proceedings of the international conference on noise and vibration engineering, Belgium.

  • Bendat, J. S., & Piersol, A. G. (1986). Random data: Analysis and measurement procedures (2nd ed.). New York: Wiley.

    Google Scholar 

  • Bonnardot, F., El Badaoui, M., Randall, B., Danière, J., & Guillet, F. (2005). Use of the acceleration of a gearbox in order to perform angular resampling with limited speed fluctuation. Mechanical Systems and Signal Processing, 19, 766–785.

    Article  Google Scholar 

  • Boulenger, A., & Pachaud, C. (2007). Analyse vibratoire en maintenance: Surveillance et diagnostic vibratoire. Paris: Edition Dunod, L’Usine Nouvelle.

  • Drefus, G., Martinez, J. M., Samuelides, M., Gordon, M. B., Badran, F., Thiria, S., et al. (2002). Réseaux de neurones: Méthodologie et applications. Paris: Editions Eyrolles.

  • Dubuisson, B. (1990). Diagnostic et reconnaissance des formes. Traité des nouvelles technologies. Série: Diagnostic et Maintenance. Paris: Editions Hermès.

    Google Scholar 

  • Fedala, S., Felkaoui, A., & Zegadi, R. (2009). Optimisation des paramètres du vecteur forme: Application au diagnostic vibratoire automatisé des défauts d’une boite de vitesse d’un hélicoptère. Journal Matériaux & Techniques, 97(2), 149–155.

    Article  Google Scholar 

  • Hajnayeb, A., Ghasemloonia, A., Khadem, S. E., & Moradi, M. H. (2011). Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis. Expert Systems with Applications, 38(8), 10205–10209.

    Article  Google Scholar 

  • Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete fourier transforms. Proceedings of the IEEE, 66, 55–83.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Hoffman, A. J., & Van der Merwe, N. T. (2002). The application of neural networks to vibrational diagnostics for multiple fault conditions. Computer Standards & Interfaces, 24, 139–149.

    Article  Google Scholar 

  • Hunter, D., Yu, H., Pukish, M. S., Kolbusz, J., & Wilamowski, B. M. (2012). Selection of proper neural network sizes and architectures: A comparative study. IEEE Transactions on Industrial Informatics, 8(2), 228–240.

    Article  Google Scholar 

  • Khushaba, R. N., Al-Ani, A., & Al-Jumaily, A. (2011). Feature subset selection using differential evolution and a statistical repair mechanism. Expert Systems with Applications, 38(9), 11515–11526.

  • Kudo, M., & Sklansky, J. (2000). Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 33(1), 25–41.

    Article  Google Scholar 

  • Li, Y., Gu, F., Harris, G., Ball, A., Bennett, N., & Travis, K. (2005). The measurement of instantaneous angular speed. Mechanical Systems and Signal Processing, 19, 786–805.

    Article  Google Scholar 

  • Paya, B. A., Esat, I. I., & Badi, M. N. M. (1997). Artificial neural network based fault diagnostics of rotating machinery using wavelet transforms as a preprocessor. Mechanical Systems and Signal Processing, 11, 751–765.

    Article  Google Scholar 

  • Rafiee, J., Arvani, F., Harifi, A., & Sadeghi, M. H. (2007). Intelligent condition monitoring of a gearbox using artificial neural network. Mechanical Systems and Signal Processing, 21, 1746–1754.

    Article  Google Scholar 

  • Rajakarunakaran, S., Venkumar, P., Devaraj, D., & Rao, K. S. P. (2008). Artificial neural network approach for fault detection in rotary system. Applied Soft Computing, 8(1), 740–748.

    Article  Google Scholar 

  • Randall, B. (2011). Vibration-based condition monitoring: industrial, aerospace and automotive applications. New York: Wiley.

    Book  Google Scholar 

  • Rémond, D. (1998). Practical performances of high-speed measurement of gear transmission error or torsional vibrations with optical encoders. Measurement Science & Technology, 9(3), 347–353.

    Article  Google Scholar 

  • Renaudin, L., Bonnardot, F., Musy, O., Doray, J. B., & Rémond, D. (2010). Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. Mechanical Systems and Signal Processing, 24, 998–2011.

    Article  Google Scholar 

  • Rzeszucinski, P. J., Sinha, J. K., Edwards, R., Starr, A., & Allen, B. (2012). Normalised root mean square and amplitude of sidebands of vibration response as tools for gearbox diagnosis. Strain, 48, 445–452.

    Article  Google Scholar 

  • Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2004). Bearing fault detection using artificial neuralnetworks and genetic algorithm. Journal on Applied Signal Processing, 3, 366–377.

    Google Scholar 

  • Trigeassou, J. C. (2011). Diagnostic des machines électriques. Paris: Edition Lavoisier.

    Book  Google Scholar 

  • Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., & Wu, B. (2006). Intelligent fault diagnosis and prognosis for engineering systems. New Jersey: Wiley.

    Book  Google Scholar 

  • Vecer, P., Kreidl, M., & Smid, R. (2005). Condition indicators for gearbox condition monitoring systems. ACTA Polytechnica, 45, 35–43.

    Google Scholar 

  • Zappalá, D., Tavner, P. J., Crabtree, C. J., & Sheng, S. (2014). Side-band algorithm for automatic wind turbine gearbox fault detection and diagnosis. IET Renewable Power Generation, 8(4), 380–389.

    Article  Google Scholar 

  • Zarei, J. (2012). Induction motors bearing fault detection using pattern recognition techniques. Expert Systems with Applications, 39, 68–73.

  • Zwingelstein, G. (1995). Diagnostic des défaillances. Théorie et pratique pour les systèmes industriels, Série Diagnostic et Maintenance. Paris: Editions Hermès.

    Google Scholar 

Download references

Acknowledgments

This work was achieved at the laboratories LaMCoS (INSA-Lyon, France) and LMPA (IOMP, Sétif -1- University, Algeria). The authors would like to thank the Algerian and French Ministries of Higher Education and Scientific Research for their financial and technical support in the framework of program PROFAS 2011-2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semchedine Fedala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedala, S., Rémond, D., Zegadi, R. et al. Contribution of angular measurements to intelligent gear faults diagnosis. J Intell Manuf 29, 1115–1131 (2018). https://doi.org/10.1007/s10845-015-1162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1162-1

Keywords

Navigation