Skip to main content
Log in

Enhanced shuffled frog-leaping algorithm for solving numerical function optimization problems

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The shuffled frog-leaping algorithm (SFLA) is a relatively new meta-heuristic optimization algorithm that can be applied to a wide range of problems. After analyzing the weakness of traditional SFLA, this paper presents an enhanced shuffled frog-leaping algorithm (MS-SFLA) for solving numerical function optimization problems. As the first extension, a new population initialization scheme based on chaotic opposition-based learning is employed to speed up the global convergence. In addition, to maintain efficiently the balance between exploration and exploitation, an adaptive nonlinear inertia weight is introduced into the SFLA algorithm. Further, a perturbation operator strategy based on Gaussian mutation is designed for local evolutionary, so as to help the best frog to jump out of any possible local optima and/or to refine its accuracy. In order to illustrate the efficiency of the proposed method (MS-SFLA), 23 well-known numerical function optimization problems and 25 benchmark functions of CEC2005 are selected as testing functions. The experimental results show that the enhanced SFLA has a faster convergence speed and better search ability than other relevant methods for almost all functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahandani, M. A., & Alavi-Rad, H. (2015). Opposition-based learning in shuffled frog leaping: An application for parameter identification. Information Sciences, 291, 19–42.

    Article  Google Scholar 

  • Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23, 1001–1014.

    Article  Google Scholar 

  • Alireza, R. V., Mostafa, D., Hamed, R., & Ehsan, S. (2008). A novel hybrid multi-objective shuffled frog-leaping algorithm for a bi-criteria permutation flow shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 41, 1227–1239.

    Google Scholar 

  • Al-Tabtabai, H., & Alex, P. A. (1999). Using genetic algorithms to solve optimization problems in construction. Engineering Construction and Architectural Management, 6(2), 121–132.

    Article  Google Scholar 

  • Auger, A., & Hansen, N. (2005). Performance evaluation of an advanced local search evolutionary algorithm. In Proceedings of the 2005 IEEE congress on evolutionary computation (CEC’2005), pp. 1777–1784.

  • Brajevic, I., & Tuba, M. (2013). An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. Journal of Intelligent Manufacturing, 24, 729–740.

    Article  Google Scholar 

  • Ding, J., Liu, J., Chowdhury, K. R., et al. (2014). A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization. Neurocomputing, 137, 261–267.

    Article  Google Scholar 

  • Elbeltagi, E., Hegazy, T., & Gridrson, D. (2007). A modified shuffled frog-leaping optimization algorithm: Applications to project management. Structure and Infrastructure Engineering, 3(1), 53–60.

    Article  Google Scholar 

  • Eslami, M., Shareef, H., Mohamed, A., et al. (2012). An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems. International Journal of Electrical Power and Energy Systems, 43(1), 1467–1478.

    Article  Google Scholar 

  • Eusuff, M., & Lansey, K. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 129(3), 10–25.

    Article  Google Scholar 

  • Guo, L., Wang, G.-G., Gandomi, A. H., et al. (2014). A new improved krill herd algorithm for global numerical optimization. Neurocomputing, 138, 392–402.

    Article  Google Scholar 

  • Huynh, T.-H. (2008). A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers. In Proceedings of international conference on information technology (ICIT 2008), Singapore, pp. 21–24.

  • Jin, Y., Guan, Y., & Zheng, L. (2011). An image encryption algorithm based on chaos. Advances in Intelligent and Soft Computing, 106, 493–497.

    Article  Google Scholar 

  • Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.

    Article  Google Scholar 

  • Lakshmi, K., & Rao, A. R. M. (2013). Hybrid shuffled frog leaping optimization algorithm for multi-objective optimal design of laminate composites. Computers & Structures, 125, 200–216.

    Article  Google Scholar 

  • Li, M., Lin, D., & Kou, J. (2012). A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization. Applied Soft Computing, 12(3), 975–987.

    Article  Google Scholar 

  • Li, X., Liu, L., Wang, N., & Pan, J.-S. (2011). A new robust watermarking scheme based on shuffled frog leaping algorithm. Intelligent Automation and Soft Computing, 17(2), 219–231.

    Article  Google Scholar 

  • Li, X., Luo, J., Chen, M.-R., et al. (2012). An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimization. Information Sciences, 192, 143–151.

    Article  Google Scholar 

  • Li, G., Niu, P., & Xiao, X. (2012). Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Applied Soft Computing, 12(1), 320–332.

    Article  Google Scholar 

  • Luo, X., Yang, Y., & Li, X. (2009). Modified shuffled frog-leaping algorithm to solve traveling salesman problem. Journal of Communications, 30(7), 130–135.

    Google Scholar 

  • Lu, X., Tang, K., Sendhoff, B., & Yao, X. (2014). A new self-adaptation scheme for differential evolution. Neurocomputing, 146, 2–16.

    Article  Google Scholar 

  • Niknam, T., Firouzi, B. B., & Mojarrad, H. D. (2011). A new evolutionary algorithm for non-linear economic dispatch. Expert Systems with Applications, 38(10), 13301–13309.

    Article  Google Scholar 

  • Oyeka, I. C. A., & Ebuh, G. U. (2012). Modified Wilcoxon signed-rank test. Open Journal of Statistics, 2, 172–176.

    Article  Google Scholar 

  • Pan, Q.-K., Sang, H.-Y., Duan, J.-H., & Gao, L. (2014). An improved fruit fly optimization algorithm for continuous function optimization problems. Knowledge-Based Systems, 62, 69–83.

    Article  Google Scholar 

  • Purwoharjono, A., Muhammad, P., Ontoseno, S., et al. (2013). Optimal placement of TCSC using linear decreasing inertia weight gravitational search algorithm. Journal of Theoretical and Applied Information Technology, 47(2), 460–470.

    Google Scholar 

  • Rahimi-Vahed, A. (2007). A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem. Computers & Industrial Engineering, 53(4), 642–666.

    Article  Google Scholar 

  • Rahimi-Vahed, A., & Mirzaei, A. H. (2007). Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm. Soft Computing, 12(5), 435–452.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica D, 20(3), 710–720.

    Google Scholar 

  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.

  • Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179, 2232–2248.

    Article  Google Scholar 

  • Roy, P., Roy, P., & Chakrabarti, A. (2013). Modified shuffled frog leaping algorithm with genetic algorithm crossover for solving economic load dispatch problem with valve-point effect. Applied Soft Computing, 13(11), 4244–4252.

  • Seçkiner, S. U., Eroğlu, Y., Emrullah, M., & Dereli, T. (2013). Ant colony optimization for continuous functions by using novel pheromone updating. Applied Mathematics and Computation, 219(9), 4163–4175.

    Article  Google Scholar 

  • Stanarevic, N., Tuba, M., & Bacanin, N. (2011). Modified artificial bee colony algorithm for constrained problems optimization. International Journal of Mathematical Models and Methods in Applied Sciences, 5(3), 644–651.

    Google Scholar 

  • Tanweer, M. R., Suresh, S., & Sundararajan, N. (2015). Self regulating particle swarm optimization algorithm. Information Sciences, 294, 182–202.

    Article  Google Scholar 

  • Tarique, A., & Gabbar, H. A. (2013). Particle swarm optimization (PSO) based turbine control. Intelligent Control and Automation, 4, 126–137.

    Article  Google Scholar 

  • Vijay Chakaravarthy, G., Marimuthu, S., & Naveen Sait, A. (2013). Performance evaluation of proposed differential evolution and particle swarm optimization algorithms for scheduling m-machine flow shops with lot streaming. Journal of Intelligent Manufacturing, 24, 175–191.

    Article  Google Scholar 

  • Xu, Q., Wang, L., He, B., & Wang, N. (2011). Modified opposition-based differential evolution for function optimization. Journal of Computational Information Systems, 7(5), 1582–1591.

    Google Scholar 

  • Yu, K., Wang, X., & Wang, Z. (2014). An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0918-3.

  • Zhang, S., & Wong, T. N. (2014). Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-1023-3.

  • Zhang, X., Xu, T., Zhao, L., Fan, H., & Zang, J. (2015). Research on flatness intelligent control via GA-PIDNN. Journal of Intelligent Manufacturing, 26, 359–367.

    Article  Google Scholar 

  • Zhang, X., Zhang, Y., Shi, Y., et al. (2012). Power control algorithm in cognitive radio system based on modified shuffled frog leaping algorithm. International Journal of Electronics and Communications, 66(6), 448–454.

    Article  Google Scholar 

  • Zou, F., Wang, L., Hei, X., et al. (2014). Teaching–learning-based optimization with dynamic group strategy for global optimization. Information Sciences, 273, 112–131.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 61403331, 61573306) and Natural Science Foundation of Hebei Province, China (Grant No. F2010001318).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu or Peifeng Niu.

Appendices

Appendix 1

The theoretical minimum values and the optimum location for functions in Tables 1 and 2

Function

\(X_{opt}\)

\(f_{opt}\)

\(f_{1\ldots } f_{5}\)

[0]\(^{n}\)

0

\(f_{6}\)

\([-0.5]^{n}\)

0

\(f_{7}\)

\([0]^{n}\)

0

\(f_{8}\)

\([420.96]^{n}\)

\(-\)418.9829*n

\(f_{9\ldots } f_{13}\)

\([0]^{n}\)

0

\(f_{14}\)

(\(-\)32, 32)

1

\(f_{15}\)

(0.1928, 0.1908, 0.1231, 0.1358)

0.00030

\(f_{16}\)

(0.089, \(-\)0.712), (\(-\)0.089, 0.712)

\(-1.0316\)

\(f_{17}\)

(\(-\)3.14, 12.27), (3.14, 2.275), (9.42, 2.42)

0.398

\(f_{18}\)

(0, \(-\)1)

3

\(f_{19}\)

(0.114, 0.556, 0.852)

\(-3.86\)

\(f_{20}\)

(0.201, 0.15, 0.477, 0.275, 0.311, 0.657)

\(-3.32\)

\(f_{21}\)

5 local minima in \(a_{ij}\), \(j=1,2,{\ldots },5\)

\(-10.1532\)

\(f_{22}\)

7 local minima in \(a_{ij}\), \(j=1,2,{\ldots },7\)

\(-10.4028\)

\(f_{23}\)

10 local minima in \(a_{ij}\), \(j=1,2,{\ldots },10\)

\(-10.5363\)

Appendix 2

See Tables 111213141516 and 17.

Table 11 \(a_{ij}\) in \(f_{14}\)
Table 12 \(a_{i}\) and \(b_{i }\) in \(f_{15}\)
Table 13 \(a_{i}\) and \(c_{i }\) in \(f_{19}\)
Table 14 \(p_{ij}\) in \(f_{19}\)
Table 15 \(a_{ij}\) and \(c_{i}\) in \(f_{20}\)
Table 16 \(p_{ij}\) in \(f_{20}\)
Table 17 \(a_{ij}\) and \(c_{i}\) in \(f_{21}\), \(f_{22}\), \(f_{23}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Niu, P., Li, G. et al. Enhanced shuffled frog-leaping algorithm for solving numerical function optimization problems. J Intell Manuf 29, 1133–1153 (2018). https://doi.org/10.1007/s10845-015-1164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1164-z

Keywords

Navigation