Abstract
Fabrication of micro-holes has been carried out in Inconel 718 using micro electrical discharge machining operation. Artificial neural network modelling has been carried out to predict Material Removal Rate, Overcut effect and Recast Layer thickness. The training, testing and validation data sets were collected by conducting experiments. It is observed that ANN is a powerful prediction tool. It provides agreeable results when experimental and predicted data are compared. Further optimization of the process variables has been carried out using different meta heuristic approaches like Elitist Teaching learning based optimization, Multi-Objective Differential Evolution and Multi-Objective Optimization using an Artificial Bee Colony algorithm. The comparisons are carried out to improve the accuracy of the model on the basis of Pareto front solutions.













Similar content being viewed by others
References
Ahmad, S., & Lajis, Ma. (2013). Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration. IOP Conference Series: Materials Science and Engineering, 50, 012062. doi:10.1088/1757-899X/50/1/012062.
Assarzadeh, S., & Ghoreishi, M. (2007). Neural-network-based modeling and optimization of the electro-discharge machining process. The International Journal of Advanced Manufacturing Technology, 39(5–6), 488–500. doi:10.1007/s00170-007-1235-1.
Črepinšek, M., Liu, S.-H., & Mernik, L. (2012). A note on teaching-learning-based optimization algorithm. Information Sciences, 212(0), 79–93. doi:10.1016/j.ins.2012.05.009.
Črepinšek, M., Liu, S.-H., Mernik, L., & Mernik, M. (2014). Is a comparison of results meaningful from the inexact replications of computational experiments?. Soft Computing (2013). doi:10.1007/s00500-014-1493-4.
Črepinšek, M., Liu, S.-H., & Mernik, M. (2014). Replication and comparison of computational experiments in applied evolutionary computing: Common pitfalls and guidelines to avoid them. Applied Soft Computing, 19, 161–170. doi:10.1016/j.asoc.2014.02.009.
Dhara, S. K., Kuar, a S, & Mitra, S. (2007). An artificial neural network approach on parametric optimization of laser micro-machining of die-steel. The International Journal of Advanced Manufacturing Technology, 39(1–2), 39–46. doi:10.1007/s00170-007-1199-1.
Fausett, L. V. (1994). Fundamentals of neural networks. Englewood Cliffs, NJ: Prentice-Hall.
Fenggou, C., & Dayong, Y. (2004). The study of high efficiency and intelligent optimization system in EDM sinking process. Journal of Materials Processing Technology, 149(1–3), 83–87. doi:10.1016/j.jmatprotec.2003.10.059.
Fukunaga, K., & Hostetler, L. (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory,4, 32–40.
Ghosh, S., & Reilly, D. L. (1994). Credit card fraud detection with a neural-network. In Proceedings of the twenty-seventh Hawaii international conference on system sciences, HICSS-94, pp. 621–630. doi:10.1109/HICSS.1994.323314.
Gopalakannan, S., & Senthilvelan, T. (2013). Application of response surface method on machining of Al–SiC nano-composites. Measurement, 46(8), 2705–2715. doi:10.1016/j.measurement.2013.04.036.
Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287–1300.
Jeswani, M. L. (1981). Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining. Wear, 70(2), 133–139. doi:10.1016/0043-1648(81)90148-4.
Karaboga, D., & Akay, B. (2009). A comparative study of artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108–132. doi:10.1016/j.amc.2009.03.090.
Kuppan, P., Rajadurai, a, & Narayanan, S. (2007). Influence of EDM process parameters in deep hole drilling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 38(1–2), 74–84. doi:10.1007/s00170-007-1084-y.
Majumder, A., Das, P.K., & Majumder, A. (2014). Production & manufacturing research?: An open access journal an approach to optimize the EDM process parameters using desirability- based multi-objective PSO. Production & Manufacturing Research, 2.1, 37–41. doi:10.1080/21693277.2014.902341.
Mandal, D., Pal, S. K., & Saha, P. (2007). Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. Journal of Materials Processing Technology, 186, 154–162. doi:10.1016/j.jmatprotec.2006.12.030.
Markopoulos, A. P., Manolakos, D. E., & Vaxevanidis, N. M. (2008). Artificial neural network models for the prediction of surface roughness in electrical discharge machining. Journal of Intelligent Manufacturing, 19(3), 283–292. doi:10.1007/s10845-008-0081-9.
Mernik, M., Liu, S.-H., Karaboga, D., & Črepinšek, M. (2015). On clarifying misconceptions when comparing variants of the artificial Bee Colony algorithm by offering a new implementation. Information Sciences, 291, 115–127. doi:10.1016/j.ins.2014.08.040.
Mohd Abbas, N., Solomon, D. G., & Fuad Bahari, M. (2007). A review on current research trends in electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 47(7–8), 1214–1228. doi:10.1016/j.ijmachtools.2006.08.026.
Montgomery, D. C. (2011). Design and analysis of experiments.
Panda, D. K., & Bhoi, R. K. (2005). Artificial neural network prediction of material removal rate in electro discharge machining. Materials and Manufacturing Processes, 20(4), 645–672. doi:10.1081/AMP-200055033.
Praveen, V. V., & Thangavelu, S. (2015). Performance analysis of variants of differential evolution on multi-objective optimization problems. Indian Journal of Science and Technology, 8(August), 1–6. doi:10.17485/ijst/2015/v8i17/65727.
Rao, R. V., & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations, 3(4), 535–560. doi:10.5267/j.ijiec.2012.03.007.
Rao, R. V., & Patel, V. (2013). Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Applied Mathematical Modelling, 37(3), 1147–1162. doi:10.1016/j.apm.2012.03.043.
Sarkar, S., Mitra, S., & Bhattacharyya, B. (2005). Parametric optimisation of wire electrical discharge machining of \(\gamma \) titanium aluminide alloy through an artificial neural network model. The International Journal of Advanced Manufacturing Technology, 27(5–6), 501–508. doi:10.1007/s00170-004-2203-7.
Somashekhar, K. P., Ramachandran, N., & Mathew, J. (2010). Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Materials and Manufacturing Processes, 25(6), 467–475. doi:10.1080/10426910903365760.
Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 341–359. doi:10.1023/A:1008202821328.
Teimouri, R., & Baseri, H. (2013). Forward and backward predictions of the friction stir welding parameters using fuzzy-artificial bee colony-imperialist competitive algorithm systems. Journal of Intelligent Manufacturing, 26(2), 307–319. doi:10.1007/s10845-013-0784-4.
Thillaivanan, A., & Asokan, P. (2010). Optimization of operating parameters for EDM process based on the taguchi method and artificial neural network. International Journal of Engineering Science and Technology, 2(12), 6880–6888.
Tiwary, A. P., Pradhan, B. B., & Bhattacharyya, B. (2015). Study on the influence of micro-EDM process parameters during machining of Ti-6Al-4V superalloy. 151–160. doi:10.1007/s00170-013-5557-x.
Tsai, K.-M., & Wang, P.-J. (2001). Predictions on surface finish in electrical discharge machining based upon neural network models. International Journal of Machine Tools and Manufacture, 41(10), 1385–1403. doi:10.1016/S0890-6955(01)00028-1.
Venkata Rao, R., & Kalyankar, V. D. (2013). Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26(1), 524–531. doi:10.1016/j.engappai.2012.06.007.
Wang, K., Gelgele, H. L., Wang, Y., Yuan, Q., & Fang, M. (2003). A hybrid intelligent method for modelling the EDM process. International Journal of Machine Tools and Manufacture, 43(10), 995–999. doi:10.1016/S0890-6955(03)00102-0.
Yu, K., Wang, X., & Wang, Z. (2014). An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems. Journal of Intelligent Manufacturing, (2011). doi:10.1007/s10845-014-0918-3.
Zitzler, E., Laumanns, M., Bleuler, S. (2004). A tutorial on evolutionary multiobjective optimization. Metaheuristics for multiobjective Optimization. Berlin: Springer. http://link.springer.com/chapter/10.1007/978-3-642-17144-4_1. Accessed June 8, 2015.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maity, K., Mishra, H. ANN modelling and Elitist teaching learning approach for multi-objective optimization of \(\upmu \)-EDM. J Intell Manuf 29, 1599–1616 (2018). https://doi.org/10.1007/s10845-016-1193-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-016-1193-2