Abstract
The Smart Factory is an important topic worldwide as a means for achieving Industry 4.0 in the manufacturing domain. Contemporary research on the Smart Factory has been concerned with application of the so-called Internet of Things (IoT) to the shop floor. However, IoT in this context is often restricted to solving local problems such as managing product information, collaborative information exchange, and increasing productivity. To take full advantage of the potential of the IoT in manufacturing systems, it is necessary that the information service perspective should receive keen attention. This paper proposes a reference architecture for the information service bus or middleware for the Smart Factory that can be used for information acquisition, analysis, and application for the various stakeholders at the levels of Machine, Factory, and Enterprise Resource Planning. To reflect the real voice of the industry, real industrial problems have been identified, transformed into requirements, and incorporated into the information architecture; i.e., Smart Factory Information Service Bus. The implementation process of the reference architecture is also presented and illustrated via case studies.
















Similar content being viewed by others
References
Bamber, L., & Dale, B. G. (2000). Lean production: A study of application in a traditional manufacturing environment. Production Planning & Control, 11(3), 291–298.
Bogdanski, G., Spiering, T., Li, W., Herrmann, C., & Kara, S. (2012). Energy monitoring in manufacturing companies—generating energy awareness through feedback. In Leveraging technology for a sustainable world (pp. 539–544). Berlin, Heidelberg: Springer.
Boyd, A., Noller, D., Peters, P., Salkeld, D., Thomasma, T.,Gifford, C., et al. (2008). SOA inmanufacturing—guidebook. MESA International, IBM Corporation andCapgemini Co-Branded White Paper.
Espíndola, D. B., Fumagalli, L., Garetti, M., Pereira, C. E., Botelho, S. S., & Henriques, R. V. (2013). A model-based approach for data integration to improve maintenance management by mixed reality. Computers in Industry, 64(4), 376–391.
Fang, J., Qu, T., Li, Z., Xu, G., & Huang, G. Q. (2013). Agent-based gateway operating ystem for RFID-enabled ubiquitous manufacturing enterprise. Robotics and Computer-Integrated Manufacturing, 29(4), 222–231.
Huang, B., Li, C., Yin, C., & Zhao, X. (2013). Cloud manufacturing service platform for small-and medium-sized enterprises. The International Journal of Advanced Manufacturing Technology, 65(9–12), 1261–1272.
ISO. (2014). ISO 22400: Automation systems and integration—key performance indicators (KPIs) for manufacturing operations management. Geneva: International Standards Organization.
Khaleel, H., Conzon, D., Kasinathan, P., Brizzi, P., Pastrone, C., Pramudianto, F., et al. (2015). Heterogeneous applications, tools, and methodologies in the car manufacturing industry through an IoT approach. IEEE Systems Journal. doi:10.1109/JSYST.2015.2469681.
Lee, B. E., & Suh, S. H. (2009). An architecture for ubiquitous product life cycle support system and its extension to machine tools with product data model. The International Journal of Advanced Manufacturing Technology, 42(5–6), 606–620.
Lee, J. Y., Choi, S. S., Kim, G. Y., & Noh, S. D. (2011). Ubiquitous product life cycle management (u-PLM): A real-time and integrated engineering environment using ubiquitous technology in product life cycle management (PLM). International Journal of Computer Integrated Manufacturing, 24(7), 627–649.
Lee, S., Han, S., & Mun, D. (2012). Integrated management of facility, process, and output: Data model perspective. Science China Information Sciences, 55(5), 994–1007.
Lee, S. H., & Jeong, Y. S. (2006). A system integration framework through development of ISO 10303-based product model for steel bridges. Automation in Construction, 15(2), 212–228.
Lu, Y., Xu, X., & Xu, J. (2014). Development of a hybrid manufacturing cloud. Journal of Manufacturing Systems, 33(4), 551–566.
Nassehi, A., Newman, S. T., & Allen, R. D. (2006). The application of multi-agent systems for STEP-NC computer aided process planning of prismatic components. International Journal of Machine Tools and Manufacture, 46(5), 559–574.
Shin, S. J., Suh, S. H., Stroud, I., & Yoon, S. (2015). Process-oriented life cycle assessment framework for environmentally conscious manufacturing. Journal of Intelligent Manufacturing. doi:10.1007/s10845-015-1062-4.
Suh, S. H., Shin, S. J., Yoon, J. S., & Um, J. M. (2008). UbiDM: A new paradigm for product design and manufacturing via ubiquitous computing technology. International Journal of Computer Integrated Manufacturing, 21(5), 540–549.
Um, J., Stroud, I. A., & Suh, S. H. (2015). Development and evaluation of customisation process for ubiquitous product recovery management system. International Journal of Computer Integrated Manufacturing, 28(9), 903–919.
Valckenaers, P., Van Brussel, H., Wyns, J., Bongaerts, L., & Peeters, P. (1998). Designing holonic manufacturing systems. Robotics and Computer-Integrated Manufacturing, 14(5), 455–464.
Valilai, O. F., & Houshmand, M. (2013). A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm. Robotics and Computer-Integrated Manufacturing, 29(1), 110–127.
Wang, X. V., & Xu, X. W. (2012). DIMP: an interoperable solution for software integration and product data exchange. Enterprise Information Systems, 6(3), 291–314.
Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1–14.
Wu, D., Thames, J. L., Rosen, D. W., & Schaefer, D. (2013a). Enhancing the product realization process with cloud-based design and manufacturing systems. Journal of Computing and Information Science in Engineering, 13(4), 041004.
Wu, D., Greer, M. J., Rosen, D. W., & Schaefer, D. (2013b). Cloud manufacturing: Strategic vision and state-of-the-art. Journal of Manufacturing Systems, 32(4), 564–579.
Yang, S., Bagheri, B., Kao, H. A., & Lee, J. (2015). A unified framework and platform for designing of cloud-based machine health monitoring and manufacturing systems. Journal of Manufacturing Science and Engineering, 137(4), 040914.
Acknowledgments
This research was supported by the Ministry of Trade, Industry and Energy of Korea (Development of Integrated Operational Technologies for Smart Factory Application with Manufacturing Big Data), and by the Institute for Information and Communications Technology Promotion of Korea (Establishment of the Testbed for a convergence of IoTs and manufacturing technology).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yoon, S., Um, J., Suh, SH. et al. Smart Factory Information Service Bus (SIBUS) for manufacturing application: requirement, architecture and implementation. J Intell Manuf 30, 363–382 (2019). https://doi.org/10.1007/s10845-016-1251-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-016-1251-9