Skip to main content
Log in

Defect identification in friction stir welding using continuous wavelet transform

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The manuscript reports on detection of defect that arises during friction stir welding using continuous wavelet transform (CWT) on force signal. The vertical force during welding undergoes sudden change due to presence of defects. These localized defects are detected accurately with the help of continuous wavelet transform scalogram (CWT coefficients’ gray scale image). Statistical feature of variance is used on scale of 1 of transformed signal to localize the defects. The experiments of welding are conducted on the work piece of AA 1100 with varying tool rotational speed (1000, 2000, 3000 rpm) and transverse velocity (50, 75 and 125 mm/min). The manuscript also presents the comparison of results obtained using discrete wavelet transform and CWT of force signals and shows better localization and determination of degree of defect are possible through CWT analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bhat, N. N., Kumari, K., Dutta, S., Pal, S. K., & Pal, S. (2015). Friction stir weld classification by applying wavelet analysis and support vector machine on weld surface images. Journal of Manufacturing Processes, 20, 274–281. doi:10.1016/j.jmapro.2015.07.002.

    Article  Google Scholar 

  • Chen, C., Kovacevic, R., & Jandgric, D. (2003). Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. International Journal of Machine Tools and Manufacture, 43(13), 1383–1390. doi:10.1016/S0890-6955(03)00130-5.

    Article  Google Scholar 

  • Chen, H. B., Yan, K., Lin, T., Chen, S.-B., Jiang, C.-Y., & Zhao, Y. (2006). The investigation of typical welding defects for 5456 aluminum alloy friction stir welds. Materials Science and Engineering: A, 433(1–2), 64–69. doi:10.1016/j.msea.2006.06.056.

    Article  Google Scholar 

  • Cui, L., Yang, X., Xie, Y., Hou, X., & Song, Y. (2013). Process parameter influence on defects and tensile properties of friction stir welded T-joints on AA6061-T4 sheets. Materials and Design, 51, 161–174. doi:10.1016/j.matdes.2013.04.013.

    Article  Google Scholar 

  • Cui, L., Yang, X., Zhou, G., Xu, X., & Shen, Z. (2012). Characteristics of defects and tensile behaviors on friction stir welded AA6061-T4 T-joints. Materials Science and Engineering: A, 543, 58–68. doi:10.1016/j.msea.2012.02.045.

    Article  Google Scholar 

  • Jain, R., Kumari, K., Kesharwani, R. K., Kumar, S., Pal, S. K., & Singh, S. B., et al. (2015). Friction stir welding: Scope and recent developement. In Mordern manufacturing engineering edited by J. Paulo Davim, (Springer) (pp. 179–228). doi:10.1007/978-3-319-20152-8.

    Google Scholar 

  • Jain, R., Pal, S. K., & Singh, S. B. (2016). A study on the variation of forces and temperature in a friction stir welding process: A finite element approach. Journal of Manufacturing Processes, 23, 278–286. doi:10.1016/j.jmapro.2016.04.008.

    Article  Google Scholar 

  • Jata, K. V., & Semiatin, S. L. (2000). Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Materialia, 43(8), 743–749. doi:10.1016/S1359-6462(00)00480-2.

    Article  Google Scholar 

  • Kilby, J., & Hosseini, H. G. (2006). Extracting effective features of SEMG using continuous wavelet transform. In Annual international conference of the IEEE engineering in medicine and biology—proceedings (pp. 1704–1707. doi:10.1109/IEMBS.2006.260064.

  • Kim, Y. G., Fujii, H., Tsumura, T., Komazaki, T., & Nakata, K. (2006). Three defect types in friction stir welding of aluminum die casting alloy. Materials Science and Engineering: A, 415(1–2), 250–254. doi:10.1016/j.msea.2005.09.072.

    Article  Google Scholar 

  • Kumar, U., Yadav, I., Kumari, S., Kumari, K., Ranjan, N., Kesharwani, R. K., et al. (2015). Defect identification in friction stir welding using discrete wavelet analysis. Advances in Engineering Software, 85, 43–50. doi:10.1016/j.advengsoft.2015.02.001.

    Article  Google Scholar 

  • Leonard, A. J., & Lockyer, S. A. (2003). Flaws in friction stir welds. In 4th international symposium on friction stir welding, USA (pp. 14–16).

  • Li, B., Shen, Y., & Hu, W. (2011). The study on defects in aluminum 2219–T6 thick butt friction stir welds with the application of multiple non-destructive testing methods. Materials and Design, 32(4), 2073–2084. doi:10.1016/j.matdes.2010.11.054.

    Article  Google Scholar 

  • Mandache, C., Levesque, D., Dubourg, L., & Gougeon, P. (2012). Non-destructive detection of lack of penetration defects in friction stir welds. Science and Technology of Welding and Joining, 17(4), 295–303. doi:10.1179/1362171812Y.0000000007.

    Article  Google Scholar 

  • Qian, J., Li, J., Sun, F., Xiong, J., Zhang, F., & Lin, X. (2013). An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints. Scripta Materialia, 68(3–4), 175–178. doi:10.1016/j.scriptamat.2012.10.008.

    Article  Google Scholar 

  • Ranjan, R., Khan, A. R., Parikh, C., Jain, R., Mahto, R. P., Pal, S., et al. (2016). Classification and identification of surface defects in friction stir welding: An image processing approach. Journal of Manufacturing Processes, 22, 237–253. doi:10.1016/j.jmapro.2016.03.009.

    Article  Google Scholar 

  • Rosado, L. S., Santos, T. G., Piedade, M., Ramos, P. M., & Vilaça, P. (2010). Advanced technique for non-destructive testing of friction stir welding of metals. Measurement, 43(8), 1021–1030. doi:10.1016/j.measurement.2010.02.006.

    Article  Google Scholar 

  • Saeid, T., Abdollah-zadeh, A., & Sazgari, B. (2010). Weldability and mechanical properties of dissimilar aluminum-copper lap joints made by friction stir welding. Journal of Alloys and Compounds, 490(1–2), 652–655. doi:10.1016/j.jallcom.2009.10.127.

    Article  Google Scholar 

  • Saravanan, T., Das, H., Arunmuthu, K., Philip, J., Rao, B. P. C., Jayakumar, T., et al. (2014). Evaluation of dissimilar friction stir lap joints using digital X-ray radiography. Science and Technology of Welding and Joining, 19(2), 125–132. doi:10.1179/1362171813Y.0000000172.

    Article  Google Scholar 

  • Soundararajan, V., Atharifar, H., & Kovacevic, R. (2006). Monitoring and processing the acoustic emission signals from the friction-stir-welding process. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 220(10), 1673–1685. doi:10.1243/09544054JEM586.

    Article  Google Scholar 

  • Stournaras, A., Stavropoulos, P., Salonitis, K., & Chryssolouris, G. (2009). An investigation of quality in CO2 laser cutting of aluminum. CIRP Journal of Manufacturing Science and Technology, 2(1), 61–69. doi:10.1016/j.cirpj.2009.08.005.

    Article  Google Scholar 

  • Thomas, W., Nicholas, E., Needham, J., Murch, M., Temple, S. P., & Dawes, C. (1991). International patent application no. PCT/GB92/02203 and GB patent application number 9125978.9.

  • Yu, R. Q., Hu, B., & Zou, H. C. (2012). Magnetic detection technology for tiny flaws in FSW of aluminium alloy. Science and Technology of Welding and Joining, 17(7), 534–538. doi:10.1179/1362171812Y.0000000043.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjya K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Jain, R., Kumar, U. et al. Defect identification in friction stir welding using continuous wavelet transform. J Intell Manuf 30, 483–494 (2019). https://doi.org/10.1007/s10845-016-1259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1259-1

Keywords

Navigation