Abstract
With the increasing complexity of manufacturing tasks and the exponential growth of candidate services, manufacturing service composition has become considerably challenging in relation to the integration of service supply chains in fuzzy manufacturing environments. Quality of service (QoS), as a popular index, is widely used to evaluate the fitness of solutions to the manufacturing service composition (SMSC). In this study, we first establish a new fuzzy QoS-aware mathematical model that considers the preferences of manufacturing enterprises by assigning different sub-tasks with different weights to evaluate the global fuzzy QoS of the SMSCs. We then extend the flower pollination algorithm (FPA) to obtain an optimal SMSC more effectively by making the switch probability self-adaptive, improving the local search ability, and adding the strategy of elite replacement. Finally, we demonstrate that the proposed extended FPA is an effective and efficient algorithm for solving the manufacturing service composition problem with differently weighted sub-tasks in a fuzzy manufacturing environment. We do this by comparing it with other well-known metaheuristic algorithms such as basic FPA, genetic algorithm, cuckoo search algorithm, and particle swarm optimization.







Similar content being viewed by others
References
Amin, S. H., & Razmi, J. (2009). An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation. Expert Systems with Applications, 36(4), 8639–8648.
Cao, Y. L., Wu, Z. J., Liu, T., Gao, Z. B., & Yang, J. X. (2016). Multivariate process capability evaluation of cloud manufacturing resource based on intuitionistic fuzzy set. The International Journal of Advanced Manufacturing Technology, 84(1), 227–237.
Chen, C. T., Lin, C. T., & Huang, S. F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102(2), 289–301.
Kahraman, C., Cebeci, U., & Ruan, D. (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87(2), 171–184.
Kanagaraj, G., Ponnambalam, S. G., & Jawahar, N. (2016). Reliability-based total cost of ownership approach for supplier selection using cuckoo-inspired hybrid algorithm. The International Journal of Advanced Manufacturing Technology, 84(5), 801–816.
Karagöz, S., & Yildiz, A. R. (2017). A comparison of recent metaheuristic algorithms for crashworthiness optimisation of vehicle thin-walled tubes considering sheet metal forming effects. International Journal of Vehicle Design, 73(1–3), 179–188.
Li, Q., Dou, R. L., Chen, F. Z., & Nan, G. F. (2014). A QoS-oriented web service composition approach based on multi-population genetic algorithm for internet of things. International Journal of Computational Intelligence Systems, 7(2), 26–34.
Lin, Y. K., & Chong, C. S. (2017). Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system. Journal of Intelligent Manufacturing, 28(5), 1189–1201.
Liou, T. S., & Wang, M. J. J. (1992). Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems, 50(3), 247–255.
Nedic, N., Stojanovic, V., & Djordjevic, V. (2015). Optimal control of hydraulically driven parallel robot platform based on firefly algorithm. Nonlinear Dynamics, 82(3), 1–17.
Pavlyukevich, I. (2007). Lévy flights, non-local search and simulated annealing. Journal of Computational Physics, 226(2), 1830–1844.
Prsic, D., Nedic, N., & Stojanovic, V. (2016). A nature inspired optimal control of pneumatic-driven parallel robot platform. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 231(1), 59–71.
Stojanovic, V., & Nedic, N. (2016). A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform. Journal of Optimization Theory and Applications, 168(1), 332–347.
Stojanovic, V., Nedic, N., Prsic, D., Dubonjic, L., & Djordjevic, V. (2016). Application of cuckoo search algorithm to constrained control problem of a parallel robot platform. International Journal of Advanced Manufacturing Technology, 87, 1–11.
Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.
Tao, F., Zhao, D. M., Hu, Y. F., & Zhou, Z. D. (2008). Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system. IEEE Transactions on Industrial Informatics, 4(4), 315–327.
Tao, F., Zhao, D. M., Yefa, H., & Zhou, Z. D. (2010). Correlation-aware resource service composition and optimal-selection in manufacturing grid. European Journal of Operational Research, 201(1), 129–143.
Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(3), 229–241.
Wang, R., & Zhou, Y. Q. (2014). Flower pollination algorithm with dimension by dimension improvement. Mathematical Problems in Engineering, 2014(4), 1–9.
Xiang, F., Hu, Y. F., Yu, Y. R., & Wu, H. C. (2014). QoS and energy consumption aware service composition and optimal-selection based on Pareto group leader algorithm in cloud manufacturing system. Central European Journal of Operations Research, 22(4), 663–685.
Xu, W. J., Tian, S. S., Liu, Q., Xie, Y. Q., Zhou, Z. D., & Pham, D. T. (2016). An improved discrete bees algorithm for correlation-aware service aggregation optimization in cloud manufacturing. The International Journal of Advanced Manufacturing Technology, 84(1), 17–28.
Yang, X. S. (2012). Flower pollination algorithm for global optimization. In Processing of the 17th international conference on unconventional computing and natural computation, Orléans, France, pp. 240–249.
Yang, X. S., Karamanoglu, M., & He, X. (2014). Flower pollination algorithm: A novel approach for multiobjective optimization. Engineering Optimization, 46(9), 194–195.
Yaqiong, L., Man, L. K., & Zhang, W. (2011). Fuzzy theory applied in quality management of distributed manufacturing system: A literature review and classification. Engineering Applications of Artificial Intelligence, 24(2), 266–277.
Yildiz, A. R. (2013). Optimization of multi-pass turning operations using hybrid teaching learning-based approach. International Journal of Advanced Manufacturing Technology, 66(9–12), 1319–1326.
Yildiz, B. S. (2017a). A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. International Journal of Vehicle Design, 73(1–3), 208–218.
Yildiz, B. S. (2017b). Natural frequency optimization of vehicle components using the interior search algorithm. Materialprufung, 59(5), 456–458.
Yildiz, A. R., Kurtuluş, E., Demirci, E., Yildiz, B. S., & Karagöz, S. (2016a). Optimization of thin-wall structures using hybrid gravitational search and Nelder–Mead algorithm. Materialprufung, 58(1), 75–78.
Yildiz, B. S., Lekesiz, H., & Yildiz, A. R. (2016b). Structural design of vehicle components using gravitational search and charged system search algorithms. Materialprufung, 58(1), 79–81.
Yildiz, A. R., Pholdee, N., & Bureerat, S. (2017). Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. International Journal of Vehicle Design, 73(1–3), 20–53.
Yildiz, A. R., & Saitou, K. (2011). Topology synthesis of multicomponent structural assemblies in continuum domains. Journal of Mechanical Design, 133(1), 788–796.
Yildiz, B. S., & Yildiz, A. R. (2017). Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Materialprufung, 59(5), 425–429.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Zhang, W. Y., Yang, Y. S., Zhang, S., & Xu, Y. B. (2016a). A new manufacturing service selection and composition method using improved flower pollination algorithm. Mathematical Problems in Engineering, 2016(1), 1–12.
Zhang, S., Yu, Z. N., Zhang, W. Y., Yu, D. J., & Xu, Y. B. (2016b). An extended genetic algorithm for distributed integration of fuzzy process planning and scheduling. Mathematical Problems in Engineering, 2016(3), 1–13.
Zhang, W. Y., Zhang, S., Cai, M., & Huang, J. X. (2011). A new manufacturing resource allocation method for supply chain optimization using extended genetic algorithm. The International Journal of Advanced Manufacturing Technology, 53(53), 1247–1260.
Zhang, W. Y., Zhang, S., Guo, S. S., Yang, Y. S., & Chen, Y. (2016c). Concurrent optimal allocation of distributed manufacturing resources using extended teaching-learning-based optimization. International Journal of Production Research, 55, 1–18.
Zhou, Y. Q., Wang, R., & Luo, Q. F. (2016). Elite opposition-based flower pollination algorithm. Neurocomputing, 188, 294–310.
Acknowledgements
The work has been supported by National Natural Science Foundation of China (Nos. 51475410, 51375429), Zhejiang Natural Science Foundation of China (No. LY17E050010).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, S., Xu, Y., Zhang, W. et al. A new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithm. J Intell Manuf 30, 2069–2083 (2019). https://doi.org/10.1007/s10845-017-1372-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-017-1372-9