Skip to main content
Log in

Industrial feedforward control technology: a review

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In the control field, most of the research papers focus on feedback control, but few of them have discussed about feedforward control. Therefore, a review of the most commonly used feedforward control algorithms in industrial processes is necessary to be carried out. In this paper, in order to benefit researchers and engineers with different academic backgrounds, two most representative kinds of feedforward controller design algorithms and some other typical industrial feedforward control benchmarks are presented together with their characteristics, application domains and informative comments for selection. Moreover, some frequently concerned problems of feedforward control are also discussed. An industrial data driven example is presented to show how feedforward controller works to improve system performance and achieve the maximum economic profits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abilov, A. G., Zeybek, Z., Tuzunalp, O., & Telatar, Z. (2002). Fuzzy temperature control of industrial refineries furnaces through combined feedforward/feedback multivariable cascade systems. Chemical Engineering and Processing, 41(1), 87–98.

    Google Scholar 

  • Abukhalifeh, H., Dhib, R., & Fayed, M. (2005). Model predictive control of an infrared-convective dryer. Drying Technology, 23(3), 497–511.

    Google Scholar 

  • Adam, E., & Marchetti, J. L. (2004). Designing and tuning robust feedforward controllers. Computers & Chemical Engineering, 28(9), 1899–1911.

    Google Scholar 

  • Ali, S. S. A., Al Sunni, F. M., Shafiq, M., & Bakhashwain, J. M. (2010). U-model based learning feedforward control of MIMO nonlinear systems. Electrical Engineering, 91(8), 405–415.

    Google Scholar 

  • Altmann, W. (2005). Practical process control for engineers and technicians. Newnes.

  • Anderson, B. D., & Moore, J. B. (2007). Optimal control: Linear quadratic methods. Courier Corporation.

  • Ang, W. T., Khosla, P. K., & Riviere, C. N. (2007). Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics, 12(2), 134–142.

    Google Scholar 

  • Anibal Valenzuela, M., Bentley, J. M., Aguilera, P. C., & Lorenz, R. D. (2007). Improved coordinated response and disturbance rejection in the critical sections of paper machines. IEEE Transactions on Industry Applications, 43(3), 857–869.

    Google Scholar 

  • Barkefors, A., & Sternad, M. (2014). Design and analysis of linear quadratic Gaussian feedforward controllers for active noise control. IEEE Press, pp. 1777–1791.

  • Bartroli, A., Perez, J., & Carrera, J. (2010). Applying ratio control in a continuous granular reactor to achieve full nitritation under stable operating conditions. Environmental Science & Technology, 44(23), 8930–8935.

    Google Scholar 

  • Brosilow, C., & Joseph, B. (2002). Techniques of model-based control. Englewood cliffs: Prentice Hall.

    Google Scholar 

  • Buehner, M. R., & Young, P. M. (2015). Robust adaptive feedforward control and achievable tracking for systems with time delays. International Journal of Control, 88(4), 768–782.

    Google Scholar 

  • Chen, S. S. (1992). Intelligent control of semiconductor manufacturing processes. In Proceedings of IEEE international conference on fuzzy systems. IEEE, pp. 101–108.

  • Chen, Y., & Moore, K. L. (2001). Frequency domain adaptive learning feedforward control. In Proceedings of 2001 IEEE international symposium on computational intelligence in robotics and automation. IEEE, pp. 396–401.

  • Chiu, C. S. (2006). Mixed feedforward/feedback based adaptive fuzzy control for a class of MIMO nonlinear systems. IEEE Transactions on Fuzzy Systems, 14(6), 716–727.

    Google Scholar 

  • Choi, J. Y., & Do, H. M. (2001). A learning approach of wafer temperature control in a rapid thermal processing system. IEEE Transactions on Semiconductor Manufacturing, 14(1), 1–10.

    Google Scholar 

  • Chue, J. M., & Hugunin, T. D. (2010). Feedforward compensation for fly height control in a disk drive, Nov. 23 US Patent 7,839,595.

  • Cori, R., & Maffezzoni, C. (1984). Practical-optimal control of a drum boiler power plant. Automatica, 20(2), 163–173.

    Google Scholar 

  • Corripio, A. B. (2000). Tuning of industrial control systems. Instrument Society of America.

  • Dang, C., Tong, X., Huang, J., Wang, Q., & Zhang, H. (2017). Qpr and duty ratio feedforward control for vienna rectifier of HVDC supply system. IEEE Transactions on Electrical and Electronic Engineering.

  • De xin, G., & Hou peng, D. (2011). Optimal disturbance rejection via feedforward-PD for MIMO systems with external sinusoidal disturbances. Procedia Engineering, 15, 459–463.

    Google Scholar 

  • Elliott, S. J. (2000). Optimal controllers and adaptive controllers for multichannel feedforward control of stochastic disturbances. IEEE Transactions on Signal Processing, 48(4), 1053–1060.

    Google Scholar 

  • Elliott, S. J., & Sutton, T. J. (1996). Performance of feedforward and feedback systems for active control. IEEE Transactions on Speech and Audio Processing, 4(3), 214–223.

    Google Scholar 

  • Ferreres, G., & Roos, C. (2005). Efficient convex design of robust feedforward controllers. In Proceedings of the 44th IEEE conference on decision and control. IEEE, pp. 6460–6465.

  • Fujimoto, H., Hori, Y., Yamaguchi, T., & Nakagawa, S. (2000). Proposal of seeking control of hard disk drives based on perfect tracking control using multirate feedforward control. In Proceedings of the 6th international workshop on advanced motion control. IEEE, pp. 74–79.

  • Fujimoto, H., Hori, Y., & Kawamura, A. (2001). Perfect tracking control based on multirate feedforward control with generalized sampling periods. IEEE Transactions on Industrial Electronics, 48(3), 636–644.

    Google Scholar 

  • Gagnon, E., Pomerleau, A., & Desbiens, A. (1998). Simplified, ideal or inverted decoupling? ISA Transactions, 37(4), 265–276.

    Google Scholar 

  • Ghosh, R., & Narayanan, G. (2007). Generalized feedforward control of single-phase pwm rectifiers using disturbance observers. IEEE Transactions on Industrial Electronics, 54(2), 984–993.

    Google Scholar 

  • Gonzalez, C. (1995). Fuel blending system method and apparatus. Nov. 28, US Patent 5,469,830.

  • Goodwin, G. C., Graebe, S. F., & Salgado, M. E. (2001). Control system design (Vol. 240). New Jersey: Prentice Hall.

    Google Scholar 

  • Gross, E., Tomizuka, M., & Messner, W. (1994). Cancellation of discrete time unstable zeros by feedforward control. Journal of Dynamic Systems, Measurement, and Control, 116(1), 33–38.

    Google Scholar 

  • Hägglund, T. (2001). The blend stationa new ratio control structure. Control Engineering Practice, 9(11), 1215–1220.

    Google Scholar 

  • Hori, Y., Sawada, H., & Chun, Y. (1999). Slow resonance ratio control for vibration suppression and disturbance rejection in torsional system. IEEE Transactions on Industrial Electronics, 46(1), 162–168.

    Google Scholar 

  • Ho, W. K., Tay, A., Chen, M., & Kiew, C. M. (2007). Optimal feed-forward control for multizone baking in microlithography. Industrial & Engineering Chemistry Research, 46(11), 3623–3628.

    Google Scholar 

  • Isermann, R. (2013). Digital control systems. Berlin: Springer.

    Google Scholar 

  • Ismail, H., Ishak, N., Tajjudin, M., Rahiman, M. H. F., & Adnan, R. (2012). Adaptive feedforward zero phase error tracking control with model reference for high precision xy table, In Proceedings of the 4th international conference on intelligent and advanced systems (ICIAS), vol. 2. IEEE, pp. 526–530.

  • Jain, N., Otten, R. J., & Alleyne, A. G. (2010). Decoupled feedforward control for an air-conditioning and refrigeration system. In Proceedings of American control conference, pp. 5904–5909.

  • Jiang, Y., Zhu, Y., Yang, K., Hu, C., & Yu, D. (2015). A data-driven iterative decoupling feedforward control strategy with application to an ultraprecision motion stage. IEEE Transactions on Industrial Electronics, 62(1), 620–627.

    Google Scholar 

  • Jinzenji, A., Sasamoto, T., Aikawa, K., Yoshida, S., & Aruga, K. (2001). Acceleration feedforward control against rotational disturbance in hard disk drives. IEEE Transactions on Magnetics, 37(2), 888–893.

    Google Scholar 

  • Johansson, B. (2003). Feedforward control in dynamic situations, Ph.D. dissertation, Linköping University.

  • Kaibel, G. (1987). Distillation columns with vertical partitions. Chemical Engineering & Technology, 10(1), 92–98.

    Google Scholar 

  • Karer, G., Mui, G., krjanc, I., & Zupani, B. (2011). Feedforward control of a class of hybrid systems using an inverse model. Mathematics and Computers in Simulation, 82(3), 414–427.

    Google Scholar 

  • Kempf, C. J., & Kobayashi, S. (1999). Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology, 7(5), 513–526.

    Google Scholar 

  • Kim, H., Lee, K., Jeon, B., & Song, C. (2010). Quick wafer alignment using feedforward neural networks. IEEE Transactions on Automation Science and Engineering, 7(2), 377–382.

    Google Scholar 

  • Klančar, G., & Škrjanc, I. (2007). Tracking-error model-based predictive control for mobile robots in real time. Robotics and Autonomous Systems, 55(6), 460–469.

    Google Scholar 

  • Ko, P. J., Wang, Y. P., & Tien, S. C. (2013). Inverse-feedforward and robust-feedback control for high-speed operation on piezo-stages. International Journal of Control, 86(2), 197–209.

    Google Scholar 

  • Kusama, A., Nakamachi, I., Shigihara, K., Amemori, H., Miyata, Y., & Iwamoto, T. (1986). Air fuel ratio control system for furnace. Apr. 29, US Patent 4,585,161.

  • Lee, H. S., & Tomizuka, M. (1996). Robust motion controller design for high-accuracy positioning systems. IEEE Transactions on Industrial Electronics, 43(1), 48–55.

    Google Scholar 

  • Li, M., Zhu, Y., Yang, K., Hu, C., & Mu. H. (2016). An integrated model-data based zero phase error tracking feedforward control strategy with application to an ultra-precision wafer stage. IEEE Transactions on Industrial Electronics, pp. 1–1.

  • Li, H., Jeong, S. K., & You, S. S. (2009). Feedforward control of capacity and superheat for a variable speed refrigeration system. Applied Thermal Engineering, 29(5), 1067–1074.

    Google Scholar 

  • Malchow, F., & Sawodny, O. (2012). Model based feedforward control of an industrial glass feeder. Control Engineering Practice, 20(20), 6268.

    Google Scholar 

  • Marconi, L., & Isidori, A. (2000). Mixed internal model-based and feedforward control for robust tracking in nonlinear systems. Automatica, 36(7), 993–1000.

    Google Scholar 

  • Marlin, T. E. (2000). Process control. New York: McGraw-Hill.

    Google Scholar 

  • Miyazaki, T., Ohishi, K., Inomata, K., Kuramochi, K., Koide, D., & Tokumaru, D. (2004). Robust feedforward tracking control based on sudden disturbance observer and zpet control for optical disk recording system. In Proceedings of the 8th IEEE international workshop on advanced motion control. IEEE, pp. 353–358.

  • Nedic, N., Stojanovic, V., & Djordjevic, V. (2015). Optimal control of hydraulically driven parallel robot platform based on firefly algorithm. Nonlinear Dynamics, 82(3), 1–17.

    Google Scholar 

  • O’Brien, M. J., & Broussard, J. R. (1979). Feedforward control to track the output of a forced model. In Proceedings of the 17th IEEE conference on symposium on adaptive processes. IEEE, pp. 1149–1155.

  • Park, H. S., Chang, P. H., & Lee, D. Y. (1999). Continuous zero phase error tracking controller with gain error compensation. In Proceedings of the 1999 American control conference, vol. 5. IEEE, pp. 3554–3558.

  • Peng, H., & Tomizuka, M. (1993). Preview control for vehicle lateral guidance in highway automation. Journal of Dynamic Systems, Measurement, and Control, 115(4), 679–686.

    Google Scholar 

  • Piccagli, S., & Visioli, A. (2009). An optimal feedforward control design for the set-point following of MIMO processes. Journal of Process Control, 19(6), 978–984.

    Google Scholar 

  • Powell, J. D., Fekete, N., & Chang, C.-F. (1998). Observer-based air fuel ratio control. IEEE Control Systems, 18(5), 72–83.

    Google Scholar 

  • Rong, H. J., Wei, J. T., Bai, J. M., Zhao, G. S., & Liang, Y. Q. (2015). Adaptive neural control for a class of MIMO nonlinear systems with extreme learning machine. Neurocomputing, 149, 405–414.

    Google Scholar 

  • Ruegsegger, S., Wagner, A., Freudenberg, J. S., & Grimard, D. S. (1999). Feedforward control for reduced run-to-run variation in microelectronics manufacturing. IEEE Transactions on Semiconductor Manufacturing, 12(4), 493–502.

    Google Scholar 

  • Schaper, C. D., Cho, Y. M., Park, P., Norman, S. A., Gyugyi, P., Hoffmann, G., Balemi, S., Boyd, S. P., Franklin, G., Kailath, T. et al. (1992). Modeling and control of rapid thermal processing. In Proceedings of rapid thermal and integrated processing. International Society for Optics and Photonics, pp. 2–17.

  • Seborg, D. E., Mellichamp, D. A., Edgar, T. F., & Doyle, F. J. (2010). Process dynamics and control. London: Wiley.

    Google Scholar 

  • Seidler, R., Noll, D., & Thiers, G. (2004). Feedforward and feedback processes in motor control. Neuroimage, 22(4), 1775–1783.

    Google Scholar 

  • Shinskey, F. G., & Levine, W. (1996). The control handbook. CRC Press and IEEE Press.

  • Shinskey, F. G. (1990). Process control systems: Application, design and tuning. NY: McGraw-Hill.

    Google Scholar 

  • Skogestad, S., & Morari, M. (1987). Control configuration selection for distillation columns. AIChE Journal, 33(10), 1620–1635.

    Google Scholar 

  • Song, G., Zhao, J., Zhou, X., & De Abreu-García, J. A. (2005). Tracking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model. IEEE/ASME Transactions on Mechatronics, 10(2), 198–209.

    Google Scholar 

  • Stoddard, K., Crouch, P., Kozicki, M., & Tsakalis, K. (1994). Application of feedforward and adaptive feedback control to semiconductor device manufacturing. In: Proceedings of the 1994 American control conference, vol. 1. IEEE, pp. 892–896.

  • Stojanovic, V., & Nedic, N. (2016). A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform. Journal of Optimization Theory & Applications, 168(1), 332–347.

    Google Scholar 

  • Stojanovic, V., & Nedic, N. (2016). Identification of time-varying OE models in presence of non-Gaussian noise: Application to pneumatic servo drives. International Journal of Robust & Nonlinear Control, 26(18), 3974–3995.

    Google Scholar 

  • Stojanovic, V., & Nedic, N. (2016). Joint state and parameter robust estimation of stochastic nonlinear systems. International Journal of Robust & Nonlinear Control, 26(14), 3058–3074.

    Google Scholar 

  • Tan, S. C., Lai, Y., Tse, C. K., & Cheung, M. K. (2006). Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Transactions on Power Electronics, 21(1), 182–192.

    Google Scholar 

  • Tao, K. M., Kosut, R. L., & Aral, G. (1994). Learning feedforward control. In Proceedings of the 1994 American control conference, vol. 3. IEEE, pp. 2575–2579.

  • Tao, K. M., Kosut, R. L., & Ekblad, M. (1994). Feedforward learning-nonlinear processes and adaptation. In Proceedings of the 33rd IEEE conference on decision and control, vol. 2. IEEE, pp. 1060–1065.

  • Tao, K. M., Kosut, R. L., Ekblad, M., & Aral, G. (1994). Feedforward learning applied to rtp of semiconductor wafers. In Proceedings of the 33rd IEEE conference on decision and control, vol. 1. IEEE, pp. 67–72.

  • Tomizuka, M. (1974). The optimal finite preview problem and its application to man-machine systems. Ph.D. dissertation, Massachusetts Institute of Technology.

  • Tomizuka, M. (1987). Zero phase error tracking algorithm for digital control. Journal of Dynamic Systems, Measurement, and Control, 109(1), 65–68.

    Google Scholar 

  • Tomizuka, M. (1992). Feedforward digital tracking controllers for motion control applications. Advanced Robotics, 7(6), 575–586.

    Google Scholar 

  • Tomizuka, M. (1993). On the design of digital tracking controllers. Journal of Dynamic Systems, Measurement, and Control, 115(2B), 412–418.

    Google Scholar 

  • Tomizuka, M., Dornfeld, D., & Purcell, M. (1980). Application of microcomputers to automatic weld quality control. Journal of Dynamic Systems, Measurement, and Control, 102(2), 62–68.

    Google Scholar 

  • Tomizuka, M., & Janczak, D. (1985). Linear quadratic design of decoupled preview controllers for robotic arms. International Journal of Robotics Research, 4(1), 67–74.

    Google Scholar 

  • Torfs, D., De Schutter, J., & Swevers, J. (1992). Extended bandwidth zero phase error tracking control of nonminimal phase systems. Journal of Dynamic Systems, Measurement, and Control, 114(3), 347–351.

    Google Scholar 

  • Tsao, T. C., & Tomizuka, M. (1987). Adaptive zero phase error tracking algorithm for digital control. Journal of Dynamic Systems, Measurement, and Control, 109(4), 349–354.

    Google Scholar 

  • Wagner, A. B., Ruegsegger, S. M., Freudenberg, J. S., & Grimard, D. S. (1999). Interprocess run-to-run feedforward control for wafer patterning. In Proceedings of the 1999 IEEE international conference on control applications, vol. 1. IEEE, pp. 789–795.

  • Wang, J., & Malakooti, B. (1992). A feedforward neural network for multiple criteria decision making. Computers & Operations Research, 19(2), 151–167.

    Google Scholar 

  • Wu, M. F., Lin, W. K., Ho, C.-L., Wong, D. S. H., Jang, S. S., Zheng, Y., et al. (2007). A feed-forward/feedback run-to-run control of a mixed product process: Simulation and experimental studies. Industrial & Engineering Chemistry Research, 46(21), 6963–6970.

    Google Scholar 

  • Yamada, M., Funahashi, Y., & Fujiwara, Si. (1997). Zero phase error tracking system with arbitrarily specified gain characteristics. Journal of Dynamic Systems, Measurement, and Control, 119(2), 260–264.

    Google Scholar 

  • Yamada, M., Funahashi, Y., & Riadh, Z. (1999). Generalized optimal zero phase error tracking controller design. Journal of Dynamic Systems, Measurement, and Control, 121(2), 165–170.

    Google Scholar 

  • Yan, M. T., & Shiu, Y. J. (2008). Theory and application of a combined feedback-feedforward control and disturbance observer in linear motor drive wire-edm machines. International Journal of Machine Tools and Manufacture, 48(3), 388–401.

    Google Scholar 

  • Zhou, K., Doyle, J. C., Glover, K., et al. (1996). Robust and optimal control (Vol. 40). New Jersey: Prentice hall.

    Google Scholar 

  • Zhou, K., & Wang, D. (2002). Unified robust zero-error tracking control of CVCF PWM converters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(4), 492–501.

    Google Scholar 

Download references

Acknowledgements

The authors would thank Lam Research Corporation for the on-line data provided. The authors would also thank Editor-in-Chief, Associate Editor and anonymous reviewers for their useful comments and efforts to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Tian, S., Xue, D. et al. Industrial feedforward control technology: a review. J Intell Manuf 30, 2819–2833 (2019). https://doi.org/10.1007/s10845-018-1399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1399-6

Keywords

Navigation