Abstract
In the control field, most of the research papers focus on feedback control, but few of them have discussed about feedforward control. Therefore, a review of the most commonly used feedforward control algorithms in industrial processes is necessary to be carried out. In this paper, in order to benefit researchers and engineers with different academic backgrounds, two most representative kinds of feedforward controller design algorithms and some other typical industrial feedforward control benchmarks are presented together with their characteristics, application domains and informative comments for selection. Moreover, some frequently concerned problems of feedforward control are also discussed. An industrial data driven example is presented to show how feedforward controller works to improve system performance and achieve the maximum economic profits.
Similar content being viewed by others
References
Abilov, A. G., Zeybek, Z., Tuzunalp, O., & Telatar, Z. (2002). Fuzzy temperature control of industrial refineries furnaces through combined feedforward/feedback multivariable cascade systems. Chemical Engineering and Processing, 41(1), 87–98.
Abukhalifeh, H., Dhib, R., & Fayed, M. (2005). Model predictive control of an infrared-convective dryer. Drying Technology, 23(3), 497–511.
Adam, E., & Marchetti, J. L. (2004). Designing and tuning robust feedforward controllers. Computers & Chemical Engineering, 28(9), 1899–1911.
Ali, S. S. A., Al Sunni, F. M., Shafiq, M., & Bakhashwain, J. M. (2010). U-model based learning feedforward control of MIMO nonlinear systems. Electrical Engineering, 91(8), 405–415.
Altmann, W. (2005). Practical process control for engineers and technicians. Newnes.
Anderson, B. D., & Moore, J. B. (2007). Optimal control: Linear quadratic methods. Courier Corporation.
Ang, W. T., Khosla, P. K., & Riviere, C. N. (2007). Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics, 12(2), 134–142.
Anibal Valenzuela, M., Bentley, J. M., Aguilera, P. C., & Lorenz, R. D. (2007). Improved coordinated response and disturbance rejection in the critical sections of paper machines. IEEE Transactions on Industry Applications, 43(3), 857–869.
Barkefors, A., & Sternad, M. (2014). Design and analysis of linear quadratic Gaussian feedforward controllers for active noise control. IEEE Press, pp. 1777–1791.
Bartroli, A., Perez, J., & Carrera, J. (2010). Applying ratio control in a continuous granular reactor to achieve full nitritation under stable operating conditions. Environmental Science & Technology, 44(23), 8930–8935.
Brosilow, C., & Joseph, B. (2002). Techniques of model-based control. Englewood cliffs: Prentice Hall.
Buehner, M. R., & Young, P. M. (2015). Robust adaptive feedforward control and achievable tracking for systems with time delays. International Journal of Control, 88(4), 768–782.
Chen, S. S. (1992). Intelligent control of semiconductor manufacturing processes. In Proceedings of IEEE international conference on fuzzy systems. IEEE, pp. 101–108.
Chen, Y., & Moore, K. L. (2001). Frequency domain adaptive learning feedforward control. In Proceedings of 2001 IEEE international symposium on computational intelligence in robotics and automation. IEEE, pp. 396–401.
Chiu, C. S. (2006). Mixed feedforward/feedback based adaptive fuzzy control for a class of MIMO nonlinear systems. IEEE Transactions on Fuzzy Systems, 14(6), 716–727.
Choi, J. Y., & Do, H. M. (2001). A learning approach of wafer temperature control in a rapid thermal processing system. IEEE Transactions on Semiconductor Manufacturing, 14(1), 1–10.
Chue, J. M., & Hugunin, T. D. (2010). Feedforward compensation for fly height control in a disk drive, Nov. 23 US Patent 7,839,595.
Cori, R., & Maffezzoni, C. (1984). Practical-optimal control of a drum boiler power plant. Automatica, 20(2), 163–173.
Corripio, A. B. (2000). Tuning of industrial control systems. Instrument Society of America.
Dang, C., Tong, X., Huang, J., Wang, Q., & Zhang, H. (2017). Qpr and duty ratio feedforward control for vienna rectifier of HVDC supply system. IEEE Transactions on Electrical and Electronic Engineering.
De xin, G., & Hou peng, D. (2011). Optimal disturbance rejection via feedforward-PD for MIMO systems with external sinusoidal disturbances. Procedia Engineering, 15, 459–463.
Elliott, S. J. (2000). Optimal controllers and adaptive controllers for multichannel feedforward control of stochastic disturbances. IEEE Transactions on Signal Processing, 48(4), 1053–1060.
Elliott, S. J., & Sutton, T. J. (1996). Performance of feedforward and feedback systems for active control. IEEE Transactions on Speech and Audio Processing, 4(3), 214–223.
Ferreres, G., & Roos, C. (2005). Efficient convex design of robust feedforward controllers. In Proceedings of the 44th IEEE conference on decision and control. IEEE, pp. 6460–6465.
Fujimoto, H., Hori, Y., Yamaguchi, T., & Nakagawa, S. (2000). Proposal of seeking control of hard disk drives based on perfect tracking control using multirate feedforward control. In Proceedings of the 6th international workshop on advanced motion control. IEEE, pp. 74–79.
Fujimoto, H., Hori, Y., & Kawamura, A. (2001). Perfect tracking control based on multirate feedforward control with generalized sampling periods. IEEE Transactions on Industrial Electronics, 48(3), 636–644.
Gagnon, E., Pomerleau, A., & Desbiens, A. (1998). Simplified, ideal or inverted decoupling? ISA Transactions, 37(4), 265–276.
Ghosh, R., & Narayanan, G. (2007). Generalized feedforward control of single-phase pwm rectifiers using disturbance observers. IEEE Transactions on Industrial Electronics, 54(2), 984–993.
Gonzalez, C. (1995). Fuel blending system method and apparatus. Nov. 28, US Patent 5,469,830.
Goodwin, G. C., Graebe, S. F., & Salgado, M. E. (2001). Control system design (Vol. 240). New Jersey: Prentice Hall.
Gross, E., Tomizuka, M., & Messner, W. (1994). Cancellation of discrete time unstable zeros by feedforward control. Journal of Dynamic Systems, Measurement, and Control, 116(1), 33–38.
Hägglund, T. (2001). The blend stationa new ratio control structure. Control Engineering Practice, 9(11), 1215–1220.
Hori, Y., Sawada, H., & Chun, Y. (1999). Slow resonance ratio control for vibration suppression and disturbance rejection in torsional system. IEEE Transactions on Industrial Electronics, 46(1), 162–168.
Ho, W. K., Tay, A., Chen, M., & Kiew, C. M. (2007). Optimal feed-forward control for multizone baking in microlithography. Industrial & Engineering Chemistry Research, 46(11), 3623–3628.
Isermann, R. (2013). Digital control systems. Berlin: Springer.
Ismail, H., Ishak, N., Tajjudin, M., Rahiman, M. H. F., & Adnan, R. (2012). Adaptive feedforward zero phase error tracking control with model reference for high precision xy table, In Proceedings of the 4th international conference on intelligent and advanced systems (ICIAS), vol. 2. IEEE, pp. 526–530.
Jain, N., Otten, R. J., & Alleyne, A. G. (2010). Decoupled feedforward control for an air-conditioning and refrigeration system. In Proceedings of American control conference, pp. 5904–5909.
Jiang, Y., Zhu, Y., Yang, K., Hu, C., & Yu, D. (2015). A data-driven iterative decoupling feedforward control strategy with application to an ultraprecision motion stage. IEEE Transactions on Industrial Electronics, 62(1), 620–627.
Jinzenji, A., Sasamoto, T., Aikawa, K., Yoshida, S., & Aruga, K. (2001). Acceleration feedforward control against rotational disturbance in hard disk drives. IEEE Transactions on Magnetics, 37(2), 888–893.
Johansson, B. (2003). Feedforward control in dynamic situations, Ph.D. dissertation, Linköping University.
Kaibel, G. (1987). Distillation columns with vertical partitions. Chemical Engineering & Technology, 10(1), 92–98.
Karer, G., Mui, G., krjanc, I., & Zupani, B. (2011). Feedforward control of a class of hybrid systems using an inverse model. Mathematics and Computers in Simulation, 82(3), 414–427.
Kempf, C. J., & Kobayashi, S. (1999). Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology, 7(5), 513–526.
Kim, H., Lee, K., Jeon, B., & Song, C. (2010). Quick wafer alignment using feedforward neural networks. IEEE Transactions on Automation Science and Engineering, 7(2), 377–382.
Klančar, G., & Škrjanc, I. (2007). Tracking-error model-based predictive control for mobile robots in real time. Robotics and Autonomous Systems, 55(6), 460–469.
Ko, P. J., Wang, Y. P., & Tien, S. C. (2013). Inverse-feedforward and robust-feedback control for high-speed operation on piezo-stages. International Journal of Control, 86(2), 197–209.
Kusama, A., Nakamachi, I., Shigihara, K., Amemori, H., Miyata, Y., & Iwamoto, T. (1986). Air fuel ratio control system for furnace. Apr. 29, US Patent 4,585,161.
Lee, H. S., & Tomizuka, M. (1996). Robust motion controller design for high-accuracy positioning systems. IEEE Transactions on Industrial Electronics, 43(1), 48–55.
Li, M., Zhu, Y., Yang, K., Hu, C., & Mu. H. (2016). An integrated model-data based zero phase error tracking feedforward control strategy with application to an ultra-precision wafer stage. IEEE Transactions on Industrial Electronics, pp. 1–1.
Li, H., Jeong, S. K., & You, S. S. (2009). Feedforward control of capacity and superheat for a variable speed refrigeration system. Applied Thermal Engineering, 29(5), 1067–1074.
Malchow, F., & Sawodny, O. (2012). Model based feedforward control of an industrial glass feeder. Control Engineering Practice, 20(20), 6268.
Marconi, L., & Isidori, A. (2000). Mixed internal model-based and feedforward control for robust tracking in nonlinear systems. Automatica, 36(7), 993–1000.
Marlin, T. E. (2000). Process control. New York: McGraw-Hill.
Miyazaki, T., Ohishi, K., Inomata, K., Kuramochi, K., Koide, D., & Tokumaru, D. (2004). Robust feedforward tracking control based on sudden disturbance observer and zpet control for optical disk recording system. In Proceedings of the 8th IEEE international workshop on advanced motion control. IEEE, pp. 353–358.
Nedic, N., Stojanovic, V., & Djordjevic, V. (2015). Optimal control of hydraulically driven parallel robot platform based on firefly algorithm. Nonlinear Dynamics, 82(3), 1–17.
O’Brien, M. J., & Broussard, J. R. (1979). Feedforward control to track the output of a forced model. In Proceedings of the 17th IEEE conference on symposium on adaptive processes. IEEE, pp. 1149–1155.
Park, H. S., Chang, P. H., & Lee, D. Y. (1999). Continuous zero phase error tracking controller with gain error compensation. In Proceedings of the 1999 American control conference, vol. 5. IEEE, pp. 3554–3558.
Peng, H., & Tomizuka, M. (1993). Preview control for vehicle lateral guidance in highway automation. Journal of Dynamic Systems, Measurement, and Control, 115(4), 679–686.
Piccagli, S., & Visioli, A. (2009). An optimal feedforward control design for the set-point following of MIMO processes. Journal of Process Control, 19(6), 978–984.
Powell, J. D., Fekete, N., & Chang, C.-F. (1998). Observer-based air fuel ratio control. IEEE Control Systems, 18(5), 72–83.
Rong, H. J., Wei, J. T., Bai, J. M., Zhao, G. S., & Liang, Y. Q. (2015). Adaptive neural control for a class of MIMO nonlinear systems with extreme learning machine. Neurocomputing, 149, 405–414.
Ruegsegger, S., Wagner, A., Freudenberg, J. S., & Grimard, D. S. (1999). Feedforward control for reduced run-to-run variation in microelectronics manufacturing. IEEE Transactions on Semiconductor Manufacturing, 12(4), 493–502.
Schaper, C. D., Cho, Y. M., Park, P., Norman, S. A., Gyugyi, P., Hoffmann, G., Balemi, S., Boyd, S. P., Franklin, G., Kailath, T. et al. (1992). Modeling and control of rapid thermal processing. In Proceedings of rapid thermal and integrated processing. International Society for Optics and Photonics, pp. 2–17.
Seborg, D. E., Mellichamp, D. A., Edgar, T. F., & Doyle, F. J. (2010). Process dynamics and control. London: Wiley.
Seidler, R., Noll, D., & Thiers, G. (2004). Feedforward and feedback processes in motor control. Neuroimage, 22(4), 1775–1783.
Shinskey, F. G., & Levine, W. (1996). The control handbook. CRC Press and IEEE Press.
Shinskey, F. G. (1990). Process control systems: Application, design and tuning. NY: McGraw-Hill.
Skogestad, S., & Morari, M. (1987). Control configuration selection for distillation columns. AIChE Journal, 33(10), 1620–1635.
Song, G., Zhao, J., Zhou, X., & De Abreu-García, J. A. (2005). Tracking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model. IEEE/ASME Transactions on Mechatronics, 10(2), 198–209.
Stoddard, K., Crouch, P., Kozicki, M., & Tsakalis, K. (1994). Application of feedforward and adaptive feedback control to semiconductor device manufacturing. In: Proceedings of the 1994 American control conference, vol. 1. IEEE, pp. 892–896.
Stojanovic, V., & Nedic, N. (2016). A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform. Journal of Optimization Theory & Applications, 168(1), 332–347.
Stojanovic, V., & Nedic, N. (2016). Identification of time-varying OE models in presence of non-Gaussian noise: Application to pneumatic servo drives. International Journal of Robust & Nonlinear Control, 26(18), 3974–3995.
Stojanovic, V., & Nedic, N. (2016). Joint state and parameter robust estimation of stochastic nonlinear systems. International Journal of Robust & Nonlinear Control, 26(14), 3058–3074.
Tan, S. C., Lai, Y., Tse, C. K., & Cheung, M. K. (2006). Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Transactions on Power Electronics, 21(1), 182–192.
Tao, K. M., Kosut, R. L., & Aral, G. (1994). Learning feedforward control. In Proceedings of the 1994 American control conference, vol. 3. IEEE, pp. 2575–2579.
Tao, K. M., Kosut, R. L., & Ekblad, M. (1994). Feedforward learning-nonlinear processes and adaptation. In Proceedings of the 33rd IEEE conference on decision and control, vol. 2. IEEE, pp. 1060–1065.
Tao, K. M., Kosut, R. L., Ekblad, M., & Aral, G. (1994). Feedforward learning applied to rtp of semiconductor wafers. In Proceedings of the 33rd IEEE conference on decision and control, vol. 1. IEEE, pp. 67–72.
Tomizuka, M. (1974). The optimal finite preview problem and its application to man-machine systems. Ph.D. dissertation, Massachusetts Institute of Technology.
Tomizuka, M. (1987). Zero phase error tracking algorithm for digital control. Journal of Dynamic Systems, Measurement, and Control, 109(1), 65–68.
Tomizuka, M. (1992). Feedforward digital tracking controllers for motion control applications. Advanced Robotics, 7(6), 575–586.
Tomizuka, M. (1993). On the design of digital tracking controllers. Journal of Dynamic Systems, Measurement, and Control, 115(2B), 412–418.
Tomizuka, M., Dornfeld, D., & Purcell, M. (1980). Application of microcomputers to automatic weld quality control. Journal of Dynamic Systems, Measurement, and Control, 102(2), 62–68.
Tomizuka, M., & Janczak, D. (1985). Linear quadratic design of decoupled preview controllers for robotic arms. International Journal of Robotics Research, 4(1), 67–74.
Torfs, D., De Schutter, J., & Swevers, J. (1992). Extended bandwidth zero phase error tracking control of nonminimal phase systems. Journal of Dynamic Systems, Measurement, and Control, 114(3), 347–351.
Tsao, T. C., & Tomizuka, M. (1987). Adaptive zero phase error tracking algorithm for digital control. Journal of Dynamic Systems, Measurement, and Control, 109(4), 349–354.
Wagner, A. B., Ruegsegger, S. M., Freudenberg, J. S., & Grimard, D. S. (1999). Interprocess run-to-run feedforward control for wafer patterning. In Proceedings of the 1999 IEEE international conference on control applications, vol. 1. IEEE, pp. 789–795.
Wang, J., & Malakooti, B. (1992). A feedforward neural network for multiple criteria decision making. Computers & Operations Research, 19(2), 151–167.
Wu, M. F., Lin, W. K., Ho, C.-L., Wong, D. S. H., Jang, S. S., Zheng, Y., et al. (2007). A feed-forward/feedback run-to-run control of a mixed product process: Simulation and experimental studies. Industrial & Engineering Chemistry Research, 46(21), 6963–6970.
Yamada, M., Funahashi, Y., & Fujiwara, Si. (1997). Zero phase error tracking system with arbitrarily specified gain characteristics. Journal of Dynamic Systems, Measurement, and Control, 119(2), 260–264.
Yamada, M., Funahashi, Y., & Riadh, Z. (1999). Generalized optimal zero phase error tracking controller design. Journal of Dynamic Systems, Measurement, and Control, 121(2), 165–170.
Yan, M. T., & Shiu, Y. J. (2008). Theory and application of a combined feedback-feedforward control and disturbance observer in linear motor drive wire-edm machines. International Journal of Machine Tools and Manufacture, 48(3), 388–401.
Zhou, K., Doyle, J. C., Glover, K., et al. (1996). Robust and optimal control (Vol. 40). New Jersey: Prentice hall.
Zhou, K., & Wang, D. (2002). Unified robust zero-error tracking control of CVCF PWM converters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(4), 492–501.
Acknowledgements
The authors would thank Lam Research Corporation for the on-line data provided. The authors would also thank Editor-in-Chief, Associate Editor and anonymous reviewers for their useful comments and efforts to improve this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, L., Tian, S., Xue, D. et al. Industrial feedforward control technology: a review. J Intell Manuf 30, 2819–2833 (2019). https://doi.org/10.1007/s10845-018-1399-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-018-1399-6