Skip to main content

Advertisement

Log in

A modified particle swarm optimization for large-scale numerical optimizations and engineering design problems

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Particle swarm optimization (PSO) has attracted the attention of many researchers because of its simple concept and easy implementation. However, it suffers from premature convergence due to quick loss of population diversity. Meanwhile, real-world engineering design problems are generally nonlinear or large-scale or constrained optimization problems. To enhance the performance of PSO for solving large-scale numerical optimizations and engineering design problems, an adaptive disruption strategy which originates from the disruption phenomenon of astrophysics, is proposed to shift the abilities between global exploration and local exploitation. Meanwhile, a Cauchy mutation is utilized to a certain dimension of the best particle to help particle jump out the local optima. Nine well-known large-scale unconstrained problems, ten complicated shifted and/or rotated functions and four famous constrained engineering problems are utilized to validate the performance of the proposed algorithm compared against those of state-of-the-art algorithms. Experimental results and statistic analysis confirm effectiveness and promising performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23(4), 1001–1014.

    Article  Google Scholar 

  • Alexandridis, A., Chondrodima, E., & Sarimveis, H. (2016). Cooperative learning for radial basis function networks using particle swarm optimization. Applied Soft Computing, 49(Supplement C), 485–497.

    Article  Google Scholar 

  • Ali, M. M., & Zhu, W. X. (2013). A penalty function-based differential evolution algorithm for constrained global optimization. Computational Optimization and Applications, 54(3), 707–739.

    Article  Google Scholar 

  • Andrews, P. (2006). An investigation into mutation operators for particle swarm optimization. In Proceedings of the 2006 IEEE congress on evolutionary computation, IEEE (pp. 1044–1051).

  • Angeline, P. (1998). Using selection to improve particle swarm optimization. In Proceedings of the 1998 IEEE international conference on evolutionary computation, the 1998 IEEE world congress on computational intelligence, IEEE (pp. 84–89).

  • Arora, J. (2004). Introduction to optimum design (2nd ed.). Cambridge: Academic Press.

    Google Scholar 

  • Baykasoglu, A., & Akpinar, S. (2015). Weighted superposition attraction (wsa): A swarm intelligence algorithm for optimization problems c part 2: Constrained optimization. Applied Soft Computing, 37(Supplement C), 396–415.

    Article  Google Scholar 

  • Baykasoglu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36(Supplement C), 152–164.

    Article  Google Scholar 

  • Baykasoglu, A., & Ozsoydan, F. B. (2017). Evolutionary and population-based methods versus constructive search strategies in dynamic combinatorial optimization. Information Sciences, 420, 159–183.

    Article  Google Scholar 

  • Chen, Y. P., Peng, W. C., & Jian, M. C. (2007). Particle swarm optimization with recombination and dynamic linkage discovery. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 37(6), 1460–1470.

    Article  Google Scholar 

  • Chi, R., Su, Y., Zhang, D., Chi, X., & Zhang, H. (2017). A hybridization of cuckoo search and particle swarm optimization for solving optimization problems. Neural Computing and Applications.

  • Coello Coello, C. A. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.

    Article  Google Scholar 

  • De, A., Awasthi, A., & Tiwari, M. K. (2015). Robust formulation for optimizing sustainable ship routing and scheduling problem. IFAC-PapersOnLine, 48(3), 368–373.

    Article  Google Scholar 

  • De, A., Mamanduru, V. K. R., Gunasekaran, A., Subramanian, N., & Tiwari, M. K. (2016). Composite particle algorithm for sustainable integrated dynamic ship routing and scheduling optimization. Computers and Industrial Engineering, 96(Supplement C), 201–215.

    Article  Google Scholar 

  • De, A., Kumar, S. K., Gunasekaran, A., & Tiwari, M. K. (2017). Sustainable maritime inventory routing problem with time window constraints. Engineering Applications of Artificial Intelligence, 61(Supplement C), 77–95.

    Article  Google Scholar 

  • Ding, G. Y., Liu, H., & He, X. Q. (2013). A novel disruption operator in particle swarm optimization. Applied Mechanics and Materials, 380–384, 1216–1220.

    Article  Google Scholar 

  • Dogan, B., & Olmez, T. (2015). A new metaheuristic for numerical function optimization: Vortex search algorithm. Information Sciences, 293, 125–145.

    Article  Google Scholar 

  • Eberhart, R., & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms. In Proceedings of the 2001 IEEE congress on evolutionary computation, IEEE (Vol. 1, pp. 94–100).

  • Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 IEEE congress on evolutionary computation (pp. 84–88).

  • Garca, S., Fernndez, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180, 2044–2064.

    Article  Google Scholar 

  • Guo, W., Li, W., Zhang, Q., Wang, L., Wu, Q., & Ren, H. (2014). Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems. Engineering Optimization, 46(11), 1465–1484.

    Article  Google Scholar 

  • Harwit, M. (2006). Astrophysical concepts. New York: Springer.

    Google Scholar 

  • He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 186(2), 1407–1422.

    Article  Google Scholar 

  • Jiang, B., Wang, N., & Wang, L. (2013). Particle swarm optimization with age-group topology for multimodal functions and data clustering. Communications in Nonlinear Science and Numerical Simulation, 18, 3134–3145.

    Article  Google Scholar 

  • Kannan, B. K., & Kramer, S. N. (1994). An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. Journal of Mechanical Design, 116(2), 405–411.

    Article  Google Scholar 

  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Tech. rep.

  • Karagoz, S., & Yildiz, A. R. (2017). A comparison of recent metaheuristic algorithms for crashworthiness optimisation of vehicle thin-walled tubes considering sheet metal forming effects. International Journal of Vehicle Design, 73(1–3), 179–188.

    Article  Google Scholar 

  • Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In Proceedings of the 1999 IEEE congress on evolutionary computation, IEEE (Vol. 3, pp. 1931–1938).

  • Kennedy, J. (2003). Bare bones particle swarms. In Proceedings of the 2003 IEEE swarm intelligence symposium, IEEE (pp. 80–87).

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural networks, IEEE (Vol. 4, pp. 1942–1948).

  • Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In Proceedings of the 2002 IEEE congress on evolutionary computation, IEEE (Vol. 2, pp. 1671–1676).

  • Kiani, M., & Yildiz, A. R. (2016). A comparative study of non-traditional methods for vehicle crashworthiness and nvh optimization. Archives of Computational Methods in Engineering, 23(4), 723–734.

    Article  Google Scholar 

  • Kiran, M. S., & Gunduz, M. (2013). A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Applied Soft Computing, 13(4), 2188–2203.

    Article  Google Scholar 

  • Kiran, M. S., Gundz, M., & Baykan, O. K. (2012). A novel hybrid algorithm based on particle swarm and ant colony optimization for finding the global minimum. Applied Mathematics and Computation, 219, 1515–1521.

    Article  Google Scholar 

  • Krohling, R. A., & Mendel, E. (2009). Bare bones particle swarm optimization with Gaussian or Cauchy jumps. In Proceedings of the 2009 IEEE congress on evolutionary computation, IEEE (pp. 3285–3291).

  • Leu, M. S., Yeh, M. F., & Wang, S. C. (2013). Particle swarm optimization with grey evolutionary analysis. Applied Soft Computing, 13(10), 4047–4062.

    Article  Google Scholar 

  • Li, L. D., Xiaodong, L., & Xinghuo, Y. (2008). Power generation loading optimization using a multi-objective constraint-handling method via pso algorithm. In 2008 6th IEEE international conference on industrial informatics (pp. 1632–1637).

  • Liang, J. J., & Suganthan, P. N. (2005). Dynamic multi-swarm particle swarm optimizer with local search. In Proceedings of the 2005 IEEE congress on evolutionary computation, IEEE, (Vol. 1, pp. 522–528).

  • Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.

    Article  Google Scholar 

  • Lim, W. H., & Mat Isa, N. A. (2014). Particle swarm optimization with increasing topology connectivity. Engineering Applications of Artificial Intelligence, 27, 80–102.

    Article  Google Scholar 

  • Liu, J., Wu, C., Wu, G., & Wang, X. (2015). A novel differential search algorithm and applications for structure design. Applied Mathematics and Computation, 268, 246–269.

    Article  Google Scholar 

  • Liu, J., Teo, K. L., Wang, X., & Wu, C. (2016). An exact penalty function-based differential search algorithm for constrained global optimization. Soft Computing, 20(4), 1305–1313.

    Article  Google Scholar 

  • Lu, H., & Chen, W. (2006). Dynamic-objective particle swarm optimization for constrained optimization problems. Journal of Combinatorial Optimization, 12(4), 409–419.

    Article  Google Scholar 

  • Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(3), 204–210.

    Article  Google Scholar 

  • Mezura-Montes, E., & Coello, C. A. C. (2005). Useful infeasible solutions in engineering optimization with evolutionary algorithms. MICAI, Springer, 3789, 652–662.

    Google Scholar 

  • Nasir, M., Das, S., Maity, D., Sengupta, S., Halder, U., & Suganthan, P. N. (2012). A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Information Sciences, 209, 16–36.

    Article  Google Scholar 

  • Ni, Q., & Deng, J. (2013). A new logistic dynamic particle swarm optimization algorithm based on random topology. The Scientific World Journal, 2013, 8.

    Article  Google Scholar 

  • Ozsoydan, F. B., & Sipahioglu, A. (2013). Heuristic solution approaches for the cumulative capacitated vehicle routing problem. Optimization, 62(10), 1321–1340.

    Article  Google Scholar 

  • Parsopoulos, K. E., & Vrahatis, M. N. (2004). Upso: A unified particle swarm optimization scheme. Lecture Series on Computer and Computational Sciences, 1, 868–873.

    Google Scholar 

  • Parsopoulos, K. E., & Vrahatis, M. N. (2005). Unified particle swarm optimization for solving constrained engineering optimization problems. Lecture Notes in Computer Science, 3612, 582–591.

    Article  Google Scholar 

  • Peram, T., Veeramachaneni, K., & Mohan, C. K. (2003). Fitness-distance-ratio based particle swarm optimization. In Proceedings of the 2003 IEEE swarm intelligence symposium, IEEE (pp. 174–181).

  • Pholdee, N., Bureerat, S., & Yildiz, A. R. (2017). Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. International Journal of Vehicle Design, 73(1–3), 20–53.

    Article  Google Scholar 

  • Ratnaweera, A., & Halgamuge, S. K. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255.

    Article  Google Scholar 

  • Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.

    Article  Google Scholar 

  • Sarafrazi, S., Nezamabadi-pour, H., & Saryazdi, S. (2011). Disruption: A new operator in gravitational search algorithm. Scientia Iranica, 18(3), 539–548.

    Article  Google Scholar 

  • Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of the 1998 IEEE world congress on computational intelligence, the 1998 IEEE international conference on evolutionary computation, IEEE (pp. 69–73).

  • Shi, Y., & Eberhart, R. (2001). Fuzzy adaptive particle swarm optimization. In Proceedings of the 2001 congress on evolutionary computation, IEEE (Vol. 1, pp. 101–106).

  • Soleimani, H., & Kannan, G. (2015). A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Applied Mathematical Modelling, 39(14), 3990–4012.

    Article  Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

  • Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report 2005005.

  • Sun, J., Fang, W., Palade, V., Wu, X., & Xu, W. (2011). Quantum-behaved particle swarm optimization with gaussian distributed local attractor point. Applied Mathematics and Computation, 218, 3763–3775.

    Article  Google Scholar 

  • Sun, J., Wu, X., Palade, V., Fang, W., Lai, C. H., & Xu, W. (2012). Convergence analysis and improvements of quantum-behaved particle swarm optimization. Information Sciences, 193, 81–103.

    Article  Google Scholar 

  • Wang, H., Sun, H., Li, C., Rahnamayan, S., & Js, Pan. (2013). Diversity enhanced particle swarm optimization with neighborhood search. Information Sciences, 223, 119–135.

    Article  Google Scholar 

  • Xu, G. (2013). An adaptive parameter tuning of particle swarm optimization algorithm. Applied Mathematics and Computation, 219(9), 4560–4569.

    Article  Google Scholar 

  • Yeniay, O. (2005). Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Applications, 10(1), 45–56.

    Article  Google Scholar 

  • Yildiz, A. R. (2009). A novel particle swarm optimization approach for product design and manufacturing. The International Journal of Advanced Manufacturing Technology, 40(5), 617.

    Article  Google Scholar 

  • Yildiz, A. R. (2012). A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(10), 1340–1351.

    Google Scholar 

  • Yildiz, A. R. (2013). Comparison of evolutionary-based optimization algorithms for structural design optimization. Engineering Applications of Artificial Intelligence, 26(1), 327–333.

    Article  Google Scholar 

  • Yildiz, A. R., & Saitou, K. (2011). Topology synthesis of multicomponent structural assemblies in continuum domains. Journal of Mechanical Design, 133(1), 011008.

    Article  Google Scholar 

  • Yildiz, A. R., & Solanki, K. N. (2012). Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. The International Journal of Advanced Manufacturing Technology, 59(1), 367–376.

    Article  Google Scholar 

  • Yildiz, A. R., Kurtulus, E., Demirci, E., Yildiz, B. S., & Karagoz, S. (2016a). Optimization of thin-wall structures using hybrid gravitational search and nelder-mead algorithm. Materials Testing, 58(1), 75–78.

    Article  Google Scholar 

  • Yildiz, B. S. (2017). A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. International Journal of Vehicle Design, 73(1–3), 208–218.

    Article  Google Scholar 

  • Yildiz, B. S., & Lekesiz, H. (2017). Fatigue-based structural optimisation of vehicle components. International Journal of Vehicle Design, 73(1–3), 54–62.

    Article  Google Scholar 

  • Yildiz, B. S., Lekesiz, H., & Yildiz, A. R. (2016b). Structural design of vehicle components using gravitational search and charged system search algorithms. Materials Testing, 58(1), 79–81.

    Article  Google Scholar 

  • Zavala, A. E. M., Aguirre, A. H., Diharce, E. R. V., & Rionda, S. B. (2008). Constrained optimization with an improved particle swarm optimization algorithm. International Journal of Intelligent Computing and Cybernetics, 1(3), 425–453.

    Article  Google Scholar 

  • Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. S. (2009). Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 39(6), 1362–1381.

    Article  Google Scholar 

  • Zhang, W. J., & Xie, X. F. (2003). Depso: Hybrid particle swarm with differential evolution operator. IEEE International Conference on Systems Man and Cybernetics, 4, 3816–3821.

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Natural Science Foundation of China (Grant No. U1731128); the Doctoral Research Starting Funds of Liaoning Province (Grant No. 201601292); the Youth Science Funds of USTL (Grant No. 2014QN16); the Talent Development Program of USTL (Grant No. 2015RC04) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, Y., Tu, L. et al. A modified particle swarm optimization for large-scale numerical optimizations and engineering design problems. J Intell Manuf 30, 2407–2433 (2019). https://doi.org/10.1007/s10845-018-1403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1403-1

Keywords