Skip to main content
Log in

Fused magnesia manufacturing process: a survey

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper provides an overview of the manufacturing process of fused magnesia. A brief introduction to fused magnesia and its industrial production process are presented first. In order to meet the market requirements and reduce costs, fused magnesia industrial process begins to focus on these issues: high energy consumption, serious pollution, low utilization of raw materials. So the issues related to fused magnesia are reviewed. The literature work related to the fused magnesia manufacturing process is divided into four categories: modeling, optimization, control, and experimental constraints. As can be seen, with the continuous development of intelligent manufacturing technology, fused magnesia manufacturing process begins to emerge new opportunities. Research trends and opportunities are presented in the final section, with an emphasis on future potential intelligent technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, M., Butler, C., & Chen, Y. (1971). Growth of high-purity and doped alkaline earth oxides: I. MgO and CaO. The Journal of Chemical Physics, 55(8), 3752–3756.

    Google Scholar 

  • Acha, E., Semlyen, A., & Rajakovic, N. (1990). A harmonic domain computational package for nonlinear problems and its application to electric arcs. IEEE Transactions on Power Delivery, 5(3), 1390–1397.

    Google Scholar 

  • Agah, S. M., Hosseinian, S., Askarian Abyaneh, H., & Moaddabi, N. (2010). Parameter identification of arc furnace based on stochastic nature of arc length using two-step optimization technique. IEEE Transactions on Power Delivery, 25(4), 2859–2867.

    Google Scholar 

  • Ahmethodzic, A., Kapetanovi, M., Sokolija, K., Smeets, R. P., & Kertsz, V. (2011). Linking a physical arc model with a black box arc model and verification. IEEE Transactions on Dielectrics and Electrical Insulation, 18(4), 1029–1037.

    Google Scholar 

  • Allgaier, R. (1970). Interpretation of transport measurements in electronically conducting liquids. II. Hall mobility. Physical Review B, 2(6), 2257–2259.

    Google Scholar 

  • Alonso, M. A. P., & Donsion, M. P. (2004). An improved time domain arc furnace model for harmonic analysis. IEEE Transactions on Power Delivery, 19(1), 367–373.

    Google Scholar 

  • Alves, M. F., & Peixoto, Z. M. A. (2011). Modeling and compensation of flicker in electrical networks using chaos theory and SVC systems. In S. Banerjee, M. Mitra, & L. Rondoni (Eds.), Applications of chaos and nonlinear dynamics in engineering (Vol. 1, pp. 39–63). Berlin: Springer.

  • Alves, M. F., Peixoto, Z. M. A., Garcia, C. P., & Gomes, D. G. (2010). An integrated model for the study of flicker compensation in electrical networks. Electric Power Systems Research, 80(10), 1299–1305.

    Google Scholar 

  • Amadi, A., & Wang, Z. (2012). Energy optimization of submerged arc furnace. In Proceedings of international conference on systems and informatics (ICSAI) (pp. 800–804). 19–20 May, Yantai, China, IEEE.

  • Anderson, P. J., & Livey, D. T. (1961). Physical methods for investigating the properties of oxide powders in relation to sintering. Powder Metallurgy, 4(7), 189–203.

    Google Scholar 

  • Ansys I. (2011). ANSYS FLUENT, theory guide and user’s guide (p. 15317). Canonsburg, PA: Ansys Inc.

    Google Scholar 

  • Anuradha, K., Muni, B., & Kumar, A. R. (2009). Modeling of electric arc furnace & control algorithms for voltage flicker mitigation using DSTATCOM. In Proceedings of 6th international power electronics and motion control conference (IPEMC) (pp. 1123–1129). 17–20 May, IEEE.

  • Arkel, A. V., Flood, E., & Bright, N. F. (1953). The electrical conductivity of molten oxides. Canadian Journal of Chemistry, 31(11), 1009–1019.

    Google Scholar 

  • Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.

    Google Scholar 

  • Baheti, R., & Gill, H. (2011). Cyber-physical systems. The Impact of Control Technology, 12(1), 161–166.

    Google Scholar 

  • Balamurugan, S., Ashna, L., & Parthiban, P. (2014). Synthesis of nanocrystalline MgO particles by combustion followed by annealing method using hexamine as a fuel. Journal of Nanotechnology, 2014(841803), 1–6.

    Google Scholar 

  • Balan, R., Maties, V., Hancu, O., Stan, S., & Ciprian, L. (2007). Modeling and control of an electric arc furnace. In Proceedings of mediterranean conference on control & automation (MED) (pp. 1–6), IEEE.

  • Banerjee, J. C., & Sircar, N. R. (1964). A comprehensive study of indian magnesites as refractory material. Transactions of the Indian Ceramic Society, 23(1), 49–59.

    Google Scholar 

  • Baron, B., Świszcz, P., & Kraszewski, T. (2012). Some aspects of the analysis and the interpretation of electrical measurements of submerged arc-resistance furnace. Przeglad Elektrotechniczny, 88(7b), 211–213.

    Google Scholar 

  • Bekker, J. G., Craig, I., & Pistorius, P. C. (2000). Model predictive control of an electric arc furnace off-gas process. Control Engineering Practice, 8(4), 445–455.

    Google Scholar 

  • Benilov, M. S. (2002). Theory and modelling of arc cathodes. Plasma Sources Science and Technology, 11(3A), A49.

    Google Scholar 

  • Benilov, M. S. (2008). Understanding and modelling plasmaelectrode interaction in high-pressure arc discharges: A review. Journal of Physics D: Applied Physics, 41(14), 144,001.

    Google Scholar 

  • Bertola, A., Lazaroiu, G. C., Roscia, M., & Zaninelli, D. (2004). A matlab-simulink flickermeter model for power quality studies. In Proceedings of 11th international conference on harmonics and quality of power (pp. 734–738). 12–15 Sept. Lake Placid, NY, USA, IEEE.

  • Bhatti, A. S., Dollimore, D., & Dyer, A. (1984). Magnesia from seawater: A review. CLAY MINER Clay Miner, 19(5), 865–875.

    Google Scholar 

  • Billings, S. A., Boland, F. M., & Nicholson, H. (1979). Electric arc furnace modelling and control. Automatica, 15(2), 137–148.

    Google Scholar 

  • Billings, S. A., & Nicholson, H. (1977). Modelling a three-phase electric arc furnace: A comparative study of control strategies. Applied Mathematical Modelling, 1(7), 355–361.

    Google Scholar 

  • Bisio, G., Rubatto, G., & Martini, R. (2000). Heat transfer, energy saving and pollution control in UHP electric-arc furnaces. Energy, 25(11), 1047–1066.

    Google Scholar 

  • Bocanegra-Bernal, M. H. (2002). Agglomeration of magnesia powders precipitated from sea water and its effects on uniaxial compaction. Materials Science and Engineering: A, 333(1–2), 176–186.

    Google Scholar 

  • Boulet, B., Lalli, G., & Ajersch, M. (2003). Modeling and control of an electric arc furnace. In Proceedings of the 2003 american control conference (pp. 3060–3064). 4–6 June, Denver, CO, USA, IEEE

  • Boulos, M. I. (1991). Thermal plasma processing. IEEE Transactions on Plasma Science, 19(6), 1078–1089.

    Google Scholar 

  • Bowman, B., & Edels, H. (1969). Radial temperature measurements of alternating current arcs. Journal of Physics D: Applied Physics, 2(1), 53–63.

    Google Scholar 

  • Budnikov, P. P., Volodin, P. L., & Tresvyatskiy, S. G. (1960). Investigation of sintering and recrystallization processes of pure magnesium oxide. Refractories, 1(1), 53–56.

    Google Scholar 

  • Çamdali, Ü., & Tunç, M. (2002). Modelling of electric energy consumption in the AC electric arc furnace. International Journal of Energy Research, 26(10), 935–947.

    Google Scholar 

  • Çamdali, Ü., & Tunç, M. (2003). Exergy analysis and efficiency in an industrial AC electric arc furnace. Applied Thermal Engineering, 23(17), 2255–2267.

    Google Scholar 

  • Çamdali, Ü., & Tunç, M. (2004). Thermodynamic analysis of some industrial applications with variable ambient conditions. International Journal of Thermophysics, 25(6), 1965–1979.

    Google Scholar 

  • Çamdali, Ü., & Tunç, M. (2005). Computation of chemical exergy potential in an industrial AC electric arc furnace. Journal of energy resources technology, 127(1), 66–70.

    Google Scholar 

  • Çamdali, Ü., Tunç, M., & Karakaş, A. (2003). Second law analysis of thermodynamics in the electric arc furnace at a steel producing company. Energy Conversion and Management, 44(6), 961–973.

    Google Scholar 

  • Çamdali, Ü., Yetişken, Y., & Ekmekci, I. (2012). Determination of the optimum cost function for an electric arc furnace and ladle furnace system by using energy balance. Energy Sources, Part B: Economics, Planning, and Policy, 7(2), 200–212.

    Google Scholar 

  • Cao, M., Proulx, P., Boulos, M., & Mostaghimi, J. (1994). Mathematical modeling of high-power transferred arcs. Journal of Applied Physics, 76(12), 7757–7767.

    Google Scholar 

  • Carlos, R. C., Kahn, C. E., & Halabi, S. (2018). Data science: Big data, machine learning, and artificial intelligence. Journal of the American College of Radiology, 15(3), 497–498.

    Google Scholar 

  • Cayla, F., Freton, P., & Gonzalez, J.-J. (2008). Arc/cathode interaction model. IEEE Transactions on Plasma Science, 36(4), 1944–1954.

    Google Scholar 

  • Chai, T., Wu, Z., & Wang, H. (2017). A CPS based optimal operational control system for fused magnesium furnace. IFAC-PapersOnLine, 50(1), 14992–14999.

    Google Scholar 

  • Chang, G. W., Chen, C.-I., & Liu, Y.-J. (2010). A neural-network-based method of modeling electric arc furnace load for power engineering study. IEEE Transactions on Power Systems, 25(1), 138–146.

    Google Scholar 

  • Chen, F., Athreya, K. B., Sastry, V. V., & Venkata, S. S. (2004). Function space valued markov model for electric arc furnace. IEEE Transactions on Power Systems, 19(2), 826–833.

    Google Scholar 

  • Choudhary, A. K., Harding, J. A., & Tiwari, M. K. (2009). Data mining in manufacturing: A review based on the kind of knowledge. Journal of Intelligent Manufacturing, 20(5), 501.

    Google Scholar 

  • Collantes-Bellido, R., & Gomez, T. (1997). Identification and modelling of a three phase arc furnace for voltage disturbance simulation. IEEE Transactions on Power Delivery, 12(4), 1812–1817.

    Google Scholar 

  • Czapla, M., Karbowniczek, M., & Michaliszyn, A. (2008). The optimisation of electric energy consumption in the electric arc furnace. Archives of Metallurgy and Materials, 53(2), 559–565.

    Google Scholar 

  • Das, A., Maiti, J., & Banerjee, R. (2010). Process control strategies for a steel making furnace using ANN with bayesian regularization and ANFIS. Expert Systems with Applications, 37(2), 1075–1085.

    Google Scholar 

  • Delgado-Álvárez, J., Ramírez-Argáez, M. A., & González-Rivera, C. (2012). Mathematical modeling of a gas jet impinging on a two phase bath. In AIP conference proceedings (vol. 1479, pp. 177–180), AIP Publishing.

  • Deng, J., Li, J., & Deng, X. (2015). A network-based manufacturing model for spiral bevel gears. Journal of Intelligent Manufacturing, 29(2), 1–15.

    Google Scholar 

  • Di Barba, P., Dughiero, F., Dusi, M., Forzan, M., Mognaschi, M. E., Paioli, M., et al. (2012). 3D FE analysis and control of a submerged arc electric furnace. International Journal of Applied Electromagnetics and Mechanics, 39(1), 555–561.

    Google Scholar 

  • Dionise, T., & Johnston, S. (2015). Surge protection for ladle melt furnaces: LMF transformer terminals were equipped with primary surge protection consisting of surge arresters and RC snubbers. IEEE Industry Applications Magazine, 21(5), 43–52.

    Google Scholar 

  • Eastman, P. F., & Cutler, I. B. (1966). Effect of water vapor on initial sintering of magnesia. Journal of the American Ceramic Society, 49(10), 526–530.

    Google Scholar 

  • Emanuel, A. E., & Orr, J. A. (2000). An improved method of simulation of the arc voltage-current characteristic. In Proceedings of ninth international conference on harmonics and quality of power (vol.1, pp. 148–154). 1–4 Oct., Orlando, FL, USA.

  • Esfahani, M. T., & Vahidi, B. (2012). A new stochastic model of electric arc furnace based on hidden markov model: A study of its effects on the power system. IEEE Transactions on Power Delivery, 27(4), 1893–1901.

    Google Scholar 

  • Eubank, W. R. (1951). Calcination studies of magnesium oxides. Journal of the American Ceramic Society, 34(8), 225–229.

    Google Scholar 

  • Faghihi-Sani, M.-A., & Yamaguchi, A. (2002). Oxidation kinetics of MgO-C refractory bricks. Ceramics International, 28(8), 835–839.

    Google Scholar 

  • Fan, J. R., Liang, X. H., Chen, L. H., & Cen, K. F. (1998). Modeling of \({\rm NO}_{{\rm x}}\) emissions from a w-shaped boiler furnace under different operating conditions. Energy, 23(12), 1051–1055.

    Google Scholar 

  • Fernández, J. M. M., Cabal, V. Á., Montequin, V. R., & Balsera, J. V. (2008). Online estimation of electric arc furnace tap temperature by using fuzzy neural networks. Engineering Applications of Artificial Intelligence, 21(7), 1001–1012.

    Google Scholar 

  • Fu, Y., Wang, N., Wang, Z., Wang, Z., Ji, B., & Wang, X. (2017). Smelting condition identification for a fused magnesium furnace based on an acoustic signal. Journal of Materials Processing Technology, 244, 231–239.

    Google Scholar 

  • Gittler, P., Kickinger, R., Pirker, S., Fuhrmann, E., Lehner, J., & Steins, J. (2000). Application of computational fluid dynamics in the development and improvement of steelmaking processes. Scandinavian Journal of Metallurgy, 29(4), 166–176.

    Google Scholar 

  • Golshan, M. H., & Samet, H. (2009). Updating stochastic model coefficients for prediction of arc furnace reactive power. Electric Power Systems Research, 79(7), 1114–1120.

    Google Scholar 

  • Gonzalez, J., Lago, F., Freton, P., Masquere, M., & Franceries, X. (2005). Numerical modelling of an electric arc and its interaction with the anode: Part II. The three-dimensional modelinfluence of external forces on the arc column. Journal of Physics D: Applied Physics, 38(2), 306–318.

    Google Scholar 

  • Gortler, G., & Jorgl, H. P. (2004). Energetically optimized control of an electric arc furnace. In Proceedings of the 2004 IEEE international conference on control applications (vol. 1, pp. 137–142). 2-4 Sept. Taipei, Taiwan, IEEE.

  • Guézennec, A.-G., Huber, J.-C., Patisson, F., Sessiecq, P., Birat, J.-P., & Ablitzer, D. (2005). Dust formation in electric arc furnace: Birth of the particles. Powder Technology, 157(1–3), 2–11.

    Google Scholar 

  • Gunnewiek, L., Oshinowo, L., Plikas, T., & Haywood, R. (2004). The application of numerical modelling to the design of electric furnaces. In Proceedings of tenth international ferroalloys congress (pp. 555–564). 1–4 Feb., Cape Town, South Africa.

  • Haapala, K. R., Catalina, A. V., Johnson, M. L., & Sutherland, J. W. (2012). Development and application of models for steelmaking and casting environmental performance. Journal of Manufacturing Science and Engineering, 134(5), 051,013–051,025.

    Google Scholar 

  • Hajidavalloo, E., & Alagheband, A. (2008). Thermal analysis of sponge iron preheating using waste energy of EAF. Journal of Materials Processing Technology, 208(1), 336–341.

    Google Scholar 

  • Hallstedt, B. (1992). Thermodynamic assessment of the system MgO-\({\rm Al}_2{\rm O}_3\). Journal of the American Ceramic Society, 75(6), 1497–1507.

    Google Scholar 

  • Harding, T. W., & Kim, Y. W. (1982). Direct sampling of gas and particulates from electric arc furnaces. In AIP conference proceedings (vol. 84, no. 1, pp. 362–376), AIP.

  • Hasanuzzaman, M., Saidur, R., & Rahim, N. (2011). Energy, exergy and economic analysis of an annealing furnace. International Journal of Physical Sciences, 6(7), 1257–1266.

    Google Scholar 

  • Hasselman, D. (2013). Evidence for ductile deformation of single-crystal magnesium oxide subjected to thermal shock. Journal of Materials Science, 48(5), 1899–1901.

    Google Scholar 

  • Hauksdóttir, A. S., Soderstrom, T., Thorfinnsson, Y., & Gestsson, A. (1995). System identification of a three-phase submerged-arc ferrosilicon furnace. IEEE Transactions on Control Systems Technology, 3(4), 377–387.

    Google Scholar 

  • Hauksdóttir, A. S., Gestsson, A., & Vésteinsson, A. (2002). Current control of a three-phase submerged arc ferrosilicon furnace. Control Engineering Practice, 10(4), 457–463.

    Google Scholar 

  • Haynes, W. M. (2014). CRC handbook of chemistry and physics (95th ed.). Boca Raton: CRC Press.

    Google Scholar 

  • He, Q., Qin, S. J., & Toprac, A. J. (2003). Computationally efficient modeling of wafer temperatures in an LPCVD furnace. In Advanced process control and automation (vol. 5044, pp. 97–109).

  • Hołyńska, M., Tighe, A., & Semprimoschnig, C. (2018). Coatings and thin films for spacecraft thermo-optical and related functional applications. Advanced Materials Interfaces, 5(11), 1701,644.

    Google Scholar 

  • Horton, R., Haskew, T. A., & Burch, R. F. (2009). A time-domain ac electric arc furnace model for flicker planning studies. IEEE Transactions on Power Delivery, 24(3), 1450–1457.

    Google Scholar 

  • Hou, T.-H. T., Liu, W.-L., & Lin, L. (2003). Intelligent remote monitoring and diagnosis of manufacturing processes using an integrated approach of neural networks and rough sets. Journal of Intelligent Manufacturing, 14(2), 239–253.

    Google Scholar 

  • Iizuka, S., & Muraoka, T. (2012). Single-crystal MgO hollow nanospheres formed in RF impulse discharge plasmas. Journal of Nanomaterials, 2012, 1–6. (Article ID 691874).

    Google Scholar 

  • Islam, M. M., & Chowdhury, A. H. (2012). Comparison of dynamic resistance arc furnace models for flicker study. In Proceedings of 2012 7th international conference on electrical & computer engineering (ICECE) (pp. 193–196). 20–22 Dec. Dhaka, Bangladesh.

  • Janabi-Sharifi, F., & Jorjani, G. (2009). An adaptive system for modelling and simulation of electrical arc furnaces. Control Engineering Practice, 17(10), 1202–1219.

    Google Scholar 

  • Janabi-Sharifi, F., Jorjani, G., & Hassanzadeh, I. (2005). Using adaptive neuro fuzzy inference system in developing an electrical arc furnace simulator. In Proceedings of 2005 IEEE/ASME international conference on advanced intelligent mechatronics (pp. 1210–1215). 24–28 July, Monterey, CA, USA.

  • Jang, G., Wang, W., Heydt, G., Venkata, S., & Lee, B. (2001). Development of enhanced electric arc furnace models for transient analysis. Electric Power Components and Systems, 29(11), 1060–1073.

    Google Scholar 

  • Jia, S., Tang, R., & Lv, J. (2014). Therblig-based energy demand modeling methodology of machining process to support intelligent manufacturing. Journal of Intelligent Manufacturing, 25(5), 913–931.

    Google Scholar 

  • Jiang, Y., Xu, B., Y, L., Liu, C., & Liu, M. (2011). Experimental analysis on the variable polarity plasma arc pressure. Chinese Journal of Mechanical Engineering, 24(4), 607–611.

    Google Scholar 

  • Jiao, J. R., Simpson, T. W., & Siddique, Z. (2007). Product family design and platform-based product development: A state-of-the-art review. Journal of Intelligent Manufacturing, 18(1), 5–29.

    Google Scholar 

  • Johansen, S. (2003). Mathematical modeling of metallurgical processes. In Proceedings of the 3rd international conference on CFD in the minerals and process industries (pp. 5–12). 4–7 Dec. Melbourne, Australia.

  • Jones, R., Reynolds, Q., & Alport, M. (2002). Dc arc photography and modelling. Minerals Engineering, 15(11), 985–991.

    Google Scholar 

  • Jordan, D. T. (2012). Computer vision based method for electrode slip measurement in a submerged arc-furnace. Thesis, Engineering & the Built Environment

  • Kadkhodabeigi, M., Tveit, H., & Johansen, S. T. (2009). Modeling the tapping of silicon melt from the submerged arc furnace. In Seventh international conference on CFD in the minerals and process industries (pp. 1–5). 9–11 Dec. Melbourne, Australia.

  • Karakose, E., Gencoglu, M. T., Karakose, M., Yaman, O., Aydin, I., & Akin, E. (2018). A new arc detection method based on fuzzy logic using s-transform for pantograph-catenary systems. Journal of Intelligent Manufacturing, 29(4), 839–856.

    Google Scholar 

  • Kennedy, M. W., Garcia, M., & Olesen, F. (2012). Comparison of classical tools and modern finite element modeling in the electrical design of slag resistance furnaces. In International smelting technology symposium: incorporating the 6th advances in sulfide smelting symposium (pp. 239–249). Wiley : Hoboken.

  • Khoshkhoo, H., Sadeghi, S. H. H., Moini, R., & Talebi, H. A. (2011). An efficient power control scheme for electric arc furnaces using online estimation of flexible cable inductance. Computers & Mathematics with Applications, 62(12), 4391–4401.

    Google Scholar 

  • King, P., & Nyman, M. (1996). Modeling and control of an electric arc furnace using a feedforward artificial neural network. Journal of Applied Physics, 80(3), 1872–1877.

    Google Scholar 

  • King, P. E., Ochs, T. L., & Hartman, A. D. (1994). Chaotic responses in electric arc furnaces. Journal of Applied Physics, 76(4), 2059–2065.

    Google Scholar 

  • Kirschen, M., Velikorodov, V., & Pfeifer, H. (2006). Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces. Energy, 31(14), 2926–2939.

    Google Scholar 

  • Kirschen, M., Risonarta, V., & Pfeifer, H. (2009). Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry. Energy, 34(9), 1065–1072.

    Google Scholar 

  • Kirschen, M., Badr, K., & Pfeifer, H. (2011). Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry. Energy, 36(10), 6146–6155.

    Google Scholar 

  • Klaasen, B., Jones, P.-T., Durinck, D., Dewulf, J., Wollants, P., & Blanpain, B. (2010). Exergy-based efficiency analysis of pyrometallurgical processes. Metallurgical and Materials Transactions B, 41(6), 1205–1219.

    Google Scholar 

  • Kleimt, B., Köhle, S., Kühn, R., & Zisser, R. (2005). Application of models for electrical energy consumption to improve EAF operation and dynamic control. In Proceedings of 8th European electric steelmaking conference (pp. 183–197). 9–11 May, Birmingham, UK.

  • Kleinschmidt, G., Degel, R., Kneke, M., & Oterdoom, H. (2010). AC-and DC-smelter technology for ferrous metal production. In Proceedings of the twelfth international ferroalloys congress (pp. 825–838). 6–9 June, Helsinki, Finland.

  • Kolagar, A. D., Kiyoumarsi, A., Ataei, M., & Hooshmand, R. A. (2011). Reactive power compensation in a steel industrial plant with several operating electric arc furnaces utilizing openloop controlled TCR/FC compensators. European Transactions on Electrical Power, 21(1), 824–838.

    Google Scholar 

  • Kong, W., Chai, T., Ding, J., & Yang, S. (2014). Multifurnace optimization in electric smelting plants by load scheduling and control. IEEE Transactions on Automation Science and Engineering, 11(3), 850–862.

    Google Scholar 

  • Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing. Journal of Intelligent Manufacturing, 24(4), 755–762.

    Google Scholar 

  • Kumagai, A., Liu, T.-I., & Hozian, P. (2006). Control of shape memory alloy actuators with a neuro-fuzzy feedforward model element. Journal of Intelligent Manufacturing, 17(1), 45–56.

    Google Scholar 

  • Kunze, J., & Degel, R. (2004). New trends in submerged arc furnace technology. In Proceedings of tenth international ferroalloys congress (pp. 444–454). 1-4 Feb., Cape Town, South Africa.

  • Lago, F., Gonzalez, J. J., Freton, P., & Gleizes, A. (2004). A numerical modelling of an electric arc and its interaction with the anode: Part I the two-dimensional model. Journal of Physics D: Applied Physics, 37(6), 883–897.

    Google Scholar 

  • Ledoux, C., & Bonnard, F. (1997). Identification of the electric arc of a furnace. In Proceeedings of international conference on artificial neural networks (pp. 843–848). 8–10 Oct., Lausanne: Springer.

  • Leu, A.-L., Ma, S.-M., & Eyring, H. (1975). Properties of molten magnesium oxide. Proceedings of the National Academy of Sciences, 72(3), 1026–1030.

    Google Scholar 

  • Li, H., Zhao, H., Li, F., & Qiu, B. (2012). A hybrid simulation model of AC electric arc furnace. In 2012 24th Chinese control and decision conference (CCDC) (pp. 188–193). 23–25 May, Taiyuan, China.

  • Li, H., Li, M., Wang, X., Wu, X., Liu, F., & Yang, B. (2013). Synthesis and optical properties of single-crystal MgO nanobelts. Materials Letters, 102, 80–82.

    Google Scholar 

  • Li, J., Guan, Z., Wang, L., Yang, H., & Zhou, J. (2012b). An experimental study of AC arc propagation over a contaminated surface. IEEE Transactions on Dielectrics and Electrical Insulation, 19(4), 1360–1368.

    Google Scholar 

  • Li, L., & Mao, Z. (2012a). A direct adaptive controller for EAF electrode regulator system using neural networks. Neurocomputing, 82, 91–98.

    Google Scholar 

  • Li, L., & Mao, Z.-Z. (2012b). A novel robust adaptive controller for EAF electrode regulator system based on approximate model method. Journal of Central South University, 19(8), 2158–2166.

    Google Scholar 

  • Li, T., Wang, Z., & Wang, N. (2011a). Temperature field analysis and process control strategies for MgO single crystal production using adaptive neuro-fuzzy inference system. Open Materials Science Journal, 5(1), 162–169.

    Google Scholar 

  • Li, Y., Mao, Z.-Z., Wang, Y., Yuan, P., & Jia, M.-X. (2011b). Model predictive control synthesis approach of electrode regulator system for electric arc furnace. International Journal of Iron and Steel Research, 18(11), 20–25.

    Google Scholar 

  • Liu, H.-B. (2011). The research of multi-modality control strategy of arc furnace electrode regulation. In 2011 international conference on mechatronic science, electric engineering and computer (MEC) (pp. 2518–2521). 19–22 Aug., Jilin, China.

  • Liu, X., Cui, D., Li, J., & Wang, L. (2001). Simulation on adaptive control of electrode regulator systems of arc furnace. In Proceedings of the fifth international conference on electrical machines and systems (vol. 2, pp. 687–690). 18–20 Aug., Shenyang, China, IEEE.

  • Liu, Y., Xu, X., Zhang, L., Wang, L., & Zhong, R. Y. (2017). Workload-based multi-task scheduling in cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 45(2017), 3–20.

    Google Scholar 

  • Liu, Y.-J., Chang, G. W., & Hong, R.-C. (2010). Curve-fitting-based method for modeling voltagecurrent characteristic of an ac electric arc furnace. Electric Power Systems Research, 80(5), 572–581.

    Google Scholar 

  • Logar, V., Dovzan, D., & Skrjanc, I. (2011). Mathematical modeling and experimental validation of an electric arc furnace. ISIJ International, 51(3), 382–391.

    Google Scholar 

  • Logar, V., Dovžan, D., & Škrjanc, I. (2012a). Modeling and validation of an electric arc furnace: Part 1, heat and mass transfer. ISIJ International, 52(3), 402–412.

    Google Scholar 

  • Logar, V., Dovžan, D., & Škrjanc, I. (2012b). Modeling and validation of an electric arc furnace: Part 2, thermo-chemistry. ISIJ International, 52(3), 413–423.

    Google Scholar 

  • Logar, V., & Škrjanc, I. (2012a). Development of an electric arc furnace simulator considering thermal, chemical and electrical aspects. ISIJ International, 52(10), 1924–1926.

    Google Scholar 

  • Logar, V., & Škrjanc, I. (2012b). Modeling and validation of the radiative heat transfer in an electric arc furnace. ISIJ International, 52(7), 1225–1232.

    Google Scholar 

  • Lombardo, L., & Kapitulnik, A. (1992). Growth of \({\rm Bi}_2{\rm Sr}_2{\rm CaCu}_2\text{ O }_8\) single crystals using MgO crucibles. Journal of Crystal Growth, 118(3–4), 483–489.

    Google Scholar 

  • Malfliet, A., Lotfian, S., Scheunis, L., Petkov, V., Pandelaers, L., Jones, P. T., et al. (2014). Degradation mechanisms and use of refractory linings in copper production processes: A critical review. Journal of the European Ceramic Society, 34(3), 849–876.

    Google Scholar 

  • Martell, F., Deschamps, A., Mendoza, R., Melendez, M., Llamas, A., & Micheloud, O. (2011). Virtual neutral to ground voltage as stability index for electric arc furnaces. ISIJ International, 51(11), 1846–1851.

    Google Scholar 

  • Masoumi, M., Sadrameli, S., Towfighi, J., & Niaei, A. (2006). Simulation, optimization and control of a thermal cracking furnace. Energy, 31(4), 516–527.

    Google Scholar 

  • Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. (2000). Reconfigurable manufacturing systems: Key to future manufacturing. Journal of Intelligent Manufacturing, 11(4), 403–419.

    Google Scholar 

  • Mesa, J. M., Menendez, C., Ortega, F. A., & Garcia, P. J. (2009). A smart modelling for the casting temperature prediction in an electric arc furnace. International Journal of Computer Mathematics, 86(7), 1182–1193.

    Google Scholar 

  • Moghadasian, M., & Alenasser, E. (2011). Modelling and artificial intelligence-based control of electrode system for an electric arc furnace. Journal of Electromagnetic Analysis and Applications, 2011(3), 47–55.

    Google Scholar 

  • Montanari, G., Loggini, M., Cavallini, A., Pitti, L., & Zaninelli, D. (1994). Arc-furnace model for the study of flicker compensation in electrical networks. IEEE Transactions on Power Delivery, 9(4), 2026–2036.

    Google Scholar 

  • Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 27(5), 1037–1048.

    Google Scholar 

  • Mulholland, A., Brereton-Stiles, P., & Hockaday, C. (2009). The effectiveness of current control of submerged arc furnace electrode penetration in selected scenarios. Journal of the South African Institute of Mining & Metallurgy, 109(10), 601–607.

    Google Scholar 

  • Nogami, H., Chu, M., & Yagi, J.-I. (2005). Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories. Computers & Chemical Engineering, 29(11), 2438–2448.

    Google Scholar 

  • O.J.P., G., Ramírez-Argáez, M. A., & AN, C., (2010). Mathematical modeling of the melting rate of metallic particles in the electric arc furnace. The Iron and Steel Institute of Japan International, 50(1), 9–16.

  • Okada, I., Utsunomiya, Y., Uchida, H., & Aizawa, M. (2002). Md simulation of crystal growth from MgO melt. Journal of Molecular Liquids, 98, 191–200.

    Google Scholar 

  • Ollila, J., Niemel, P., Rousu, A., & Mattila, O. (2010). Preliminary characterization of the samples taken from a submerged arc ferrochrome furnace during operation. In Proceedings of the twelfth international ferroalloys congress (pp. 317–326). 6–9 June, Helsinki, Finland.

  • O’Neill-Carrillo, Bánfai, B., Heydt, G., & J. Si, E. (2001). Emtp implementation and analysis of nonlinear load models. Electric Power Components and Systems, 29(9), 809–820.

    Google Scholar 

  • Oosthuizen, D. J., Craig, I., & Pistorius, P. (2004). Economic evaluation and design of an electric arc furnace controller based on economic objectives. Control Engineering Practice, 12(3), 253–265.

    Google Scholar 

  • Ozgun, O., & Abur, A. (2002). Flicker study using a novel arc furnace model. IEEE Transactions on Power Delivery, 17(4), 1158–1163.

    Google Scholar 

  • Pacchioni, G., Cogliandro, G., & Bagus, P. S. (1991). Characterization of oxide surfaces by infrared spectroscopy of adsorbed carbon monoxide: A theoretical investigation of the frequency shift of co on mgo and nio. Surface Science, 255(3), 344–354.

    Google Scholar 

  • Panoiu, M., Panoiu, C., & Ghiormez, L. (2013). Modeling of the electric arc behavior of the electric arc furnace. In V. E. Balas, J. Fodor, A. R. Várkonyi-Kóczy, J. Dombi, & L. C. Jain (Eds.), Soft computing applications (pp. 261–271). Springer.

  • Pathak, C. M., & Moorthy, V. K. (1976). Influence of calcination treatments on the development of morphology in magnesia powders. Transactions of the Indian Ceramic Society, 35(5), 89–98.

    Google Scholar 

  • Peens, M. (2006). Modelling and control of an electrode system for a three-phase electric arc furnace. Thesis, Department of Electrical, Electronic and Computer Engineering.

  • Pellicer, N., Ciurana, J., & Delgado, J. (2011). Tool electrode geometry and process parameters influence on different feature geometry and surface quality in electrical discharge machining of AISI H13 steel. Journal of Intelligent Manufacturing, 22(4), 575–584.

    Google Scholar 

  • Peng, B., Peng, J., Kozinski, J. A., Jonathan, L., Chai, L.-Y., Zhang, C.-F., et al. (2003). Thermodynamic calculation on the smelting slag of direct recycling of electric arc furnace stainless steelmaking dust. Journal of Central South University of Technology, 10(1), 20–26.

    Google Scholar 

  • Phillips, R. L. (1967). Theory of the non-stationary arc column. British Journal of Applied Physics, 18(1), 65–78.

    Google Scholar 

  • Pickles, C. A. (2009). Thermodynamic modelling of the multiphase pyrometallurgical processing of electric arc furnace dust. Minerals Engineering, 22(11), 977–985.

    Google Scholar 

  • Pickles, C. A. (2010). Thermodynamic modelling of the formation of zincmanganese ferrite spinel in electric arc furnace dust. Journal of Hazardous Materials, 179(1), 309–317.

    Google Scholar 

  • Porter, J. R., Goldstein, J. I., & Kim, Y. W. (1982). Characterization of directly sampled electric arc furnace dust. In AIP conference proceedings (vol. 84, no. 1, pp. 377–393), AIP Publishing.

  • Prasad, T. V., & Radovanovich, S. (1962). Studies on sintering of some natural magnesites and crystal growth of periclase at high temperatures. Transactions of the Indian Ceramic Society, 21(2), 37–48.

    Google Scholar 

  • Purushothaman, S. (2010). Tool wear monitoring using artificial neural network based on extended kalman filter weight updation with transformed input patterns. Journal of Intelligent Manufacturing, 21(6), 717–730.

    Google Scholar 

  • Qiu, D., & Zhang, D.-j. (2010). The research of energy balance dynamic model on electric arc furnace. In Proceedings of international conference on information networking and automation (ICINA) (pp. 507–511), IEEE.

  • Ranganathan, S., & Godiwalla, K. M. (2001). Effect of preheat, bed porosity, and charge control on thermal response of submerged arc furnace producing ferrochromium. Ironmaking & Steelmaking, 28(3), 273–278.

    Google Scholar 

  • Ranganathan, S., & Godiwalla, K. M. (2011). Influence of process parameters on reduction contours during production of ferrochromium in submerged arc furnace. Canadian Metallurgical Quarterly, 50(1), 37–44.

    Google Scholar 

  • Rangnathan, S., Godiwalla, K. M., Satyanarayana, N. V., Kumar, P., Rao, V., Roy, A. K., et al. (2010). Simulation of the production of ferro-chromium in submerged-arc furnace. Ferrochromium Production, 2010, 401–410.

    Google Scholar 

  • Rathaba, P. L., Craig, I. K., & Pistorius, P. C. (2003). Identification of an electric arc furnace model. In Proceedings of the First African Control Conference (AFCON 2003), South African Council for Automation and Computation (SACAC) (pp. 145–150).

  • Rau, S. H., & Lee, W. J. (2016). Dc arc model based on 3-D DC arc simulation. IEEE Transactions on Industry Applications, 52(6), 5255–5261.

    Google Scholar 

  • Reynolds, Q. G. (2011). The dual-electrode DC arc furnace-modelling insights. Journal of the Southern African Institute of Mining and Metallurgy, 111(10), 697–704.

    Google Scholar 

  • Reynolds, Q. G., Jones, R. J., & Reddy, B. D. (2010). Mathematical and computational modelling of the dynamic behaviour of direct current plasma arcs. Journal of the South African Institute of Mining & Metallurgy, 110(12), 733–742.

    Google Scholar 

  • Rousu, A., Mattila, O., & Tanskanen, P. (2010). A laboratory investigation of the influence of electric current on the burden reactions in a submerged arc furnace. In Proceedings of the 12th international ferroalloys congress (pp. 303–310). 6–9 June, Helsinki, Finland.

  • Rusinowski, H., & Szega, M. (2001). The influence of the operational parameters of chamber furnaces on the consumption of the chemical energy of fuels. Energy, 26(12), 1121–1133.

    Google Scholar 

  • Sadeghian, A., & Lavers, J. (2000). Recurrent neuro-fuzzy predictors for multi-step prediction of vi characteristics of electric arc furnaces. In Proceedings of the ninth IEEE international conference on fuzzy systems (vol. 1, pp. 110–115). 7–10 May, San Antonio, TX, USA.

  • Sadeghian, A., & Lavers, J. D. (2011). Dynamic reconstruction of nonlinear vi characteristic in electric arc furnaces using adaptive neuro-fuzzy rule-based networks. Applied Soft Computing, 11(1), 1448–1456.

    Google Scholar 

  • Sadeghian, A. R., & Lavers, J. D. (2001). On the use of recurrent neuro-fuzzy networks for predictive control. In IFSA world congress and 20th NAFIPS international conference, 2001. Joint 9th (vol. 1, pp. 233–238).

  • Sævarsdóttir, G., & Bakken, J. (2010). Current distribution in submerged arc furnaces for silicon metal/ferrosilicon production. In Proceedings of the 12th international ferroalloys congress (pp. 717–728).

  • Sævarsdóttir, G., Jonsson, M. T., & Bakken, J. A. (2004). Arc-electrode interactions in silicon and ferrosilicon furnaces. In Proceedings of tenth international ferroalloys congress (vol. 1, pp. 593–604). 1–4 Feb. Cape Town, South Africa

  • Sævarsdóttir, G., Pálsson, H., Jónsson, M., & Bakken, J. (2010). Electrode erosion in submerged arc furnaces. Indian Ferro Alloys Producers Association, 2010, 752–761.

    Google Scholar 

  • Samet, H., & Golshan, M. E. H. (2012). A wide nonlinear analysis of reactive power time series related to electric arc furnaces. International Journal of Electrical Power & Energy Systems, 36(1), 127–134.

    Google Scholar 

  • Samet, H., & Mojallal, A. (2014). Enhancement of electric arc furnace reactive power compensation using Grey-Markov prediction method. Generation, Transmission & Distribution, IET, 8(9), 1626–1636.

    Google Scholar 

  • Samet, H., Farjah, E., & Sharifi, Z. (2014). A dynamic, nonlinear and time varying model for electric arc furnace. International Transactions on Electrical Energy Systems, 25(10), 2165–2180.

    Google Scholar 

  • Sanchez, J. L. G., RamirezArgaez, M. A., & Conejo, A. N. (2009). Power delivery from the arc in AC electric arc furnaces with different gas atmospheres. Steel Research International, 80(2), 113–120.

    Google Scholar 

  • Sarkheyli, A., Zain, A. M., & Sharif, S. (2015). A multi-performance prediction model based on ANFIS and new modified-GA for machining processes. Journal of Intelligent Manufacturing, 26(4), 703–716.

    Google Scholar 

  • Scheepers, E., Yang, Y., Adema, A. T., Boom, R., & Reuter, M. A. (2010). Process modeling and optimization of a submerged arc furnace for phosphorus production. Metallurgical and Materials Transactions B, 41(5), 990–1005.

    Google Scholar 

  • Shaban, Y., Meshreki, M., Yacout, S., Balazinski, M., & Attia, H. (2017). Process control based on pattern recognition for routing carbon fiber reinforced polymer. Journal of Intelligent Manufacturing, 28(1), 165–179.

    Google Scholar 

  • Shand, M. A. (2006). The chemistry and technology of magnesia. Hoboken: Wiley.

    Google Scholar 

  • Shiohara, Y., & Endo, A. (1997). Crystal growth of bulk high-\({T}_c\) superconducting oxide materials. Materials Science and Engineering: R: Reports, 19(1–2), 1–86.

    Google Scholar 

  • Slabinski, V. J., & Smith, R. L. (1971). Lithium vapor cell and discharge lamp using MgO windows. Review of Scientific Instruments, 42(9), 1334–1338.

    Google Scholar 

  • Staib, W. E., & Staib, R. B. (1992). The intelligent arc furnace controller: a neural network electrode position optimization system for the electric arc furnace. In Proceedings of international joint conference on neural networks (vol. 3, pp. 1–9). 7–11 June, Baltimore, MD, USA.

  • Taurian, O. E., Springborg, M., & Christensen, N. E. (1985). Self-consistent electronic structures of MgO and SrO. Solid State Communications, 55(4), 351–355.

    Google Scholar 

  • Terzija, V. V., & Koglin, H.-J. (2004). On the modeling of long arc in still air and arc resistance calculation. IEEE Transactions on Power Delivery, 19(3), 1012–1017.

    Google Scholar 

  • Tian, G. Y., Yin, G., & Taylor, D. (2002). Internet-based manufacturing: A review and a new infrastructure for distributed intelligent manufacturing. Journal of Intelligent Manufacturing, 13(5), 323–338.

    Google Scholar 

  • Trejo, E., Martell, F., Micheloud, O., Teng, L., Llamas, A., & Montesinos-Castellanos, A. (2012). A novel estimation of electrical and cooling losses in electric arc furnaces. Energy, 42(1), 446–456.

    Google Scholar 

  • Tunc, M., Camdali, U., & Arasil, G. (2012). Mass analysis of an electric arc furnace (EAF) at a steel company in Turkey. Metallurgist, 56(3–4), 253–261.

    Google Scholar 

  • Tuncel, E., Zeid, A., & Kamarthi, S. (2014). Solving large scale disassembly line balancing problem with uncertainty using reinforcement learning. Journal of Intelligent Manufacturing, 25(4), 647–659.

    Google Scholar 

  • Ueda, S., Natsui, S., Nogami, H., Yagi, J.-I., & Ariyama, T. (2010). Recent progress and future perspective on mathematical modeling of blast furnace. ISIJ International, 50(7), 914–923.

    Google Scholar 

  • Vanderstaay, E. C., Swinbourne, D. R., & Monteiro, M. (2004). A computational thermodynamics model of submerged arc electric furnace ferromanganese smelting. Mineral Processing and Extractive Metallurgy, 113(1), 38–44.

    Google Scholar 

  • Varadan, S., Makram, E. B., & Girgis, A. A. (1996). A new time domain voltage source model for an arc furnace using emtp. IEEE Transactions on Power Delivery, 11(3), 1685–1691.

    Google Scholar 

  • Vazdirvanidis, A., Pantazopoulos, G., & Louvaris, A. (2008). Overheat induced failure of a steel tube in an electric arc furnace (EAF) cooling system. Engineering Failure Analysis, 15(7), 931–937.

    Google Scholar 

  • Vervenne, I., Van Reuse, K., & Belmans, R. (2007). Electric arc furnace modelling from a power quality point of view. In Proceedings of 9th international conference on electrical power quality and utilisation, (pp. 1–6). 9–11 Oct., Barcelona, Spain.

  • Walter, M., & Franck, C. (2014). Improved method for direct black-box arc parameter determination and model validation. IEEE Transactions on Power Delivery, 29(2), 580–588.

    Google Scholar 

  • Wang, F., Jin, Z., Zhu, Z., & Wang, X. (2005). Application of extended Kalman filter to the modeling of electric arc furnace for power quality issues. In Proceedings of international conference on neural networks and brain (vol. 2, pp. 991–996). 13–15 Oct., Beijing, China.

  • Wang, Q., Tarn, D., & Wang, Y. (2000). Event-based intelligent control system of carbide electric arc furnace (CEAF). In Proceedings of the 3rd world congress on intelligent control and automation (vol. 1, pp. 471–476). Hefei, China, IEEE.

  • Wang, X., & Li, R. (2014). Intelligent modelling of back-side weld bead geometry using weld pool surface characteristic parameters. Journal of Intelligent Manufacturing, 25(6), 1301–1313.

    Google Scholar 

  • Wang, Y., Mao, Z., Li, Y., Tian, H., & Feng, L. (2008). Modeling and parameter identification of an electric arc for the arc furnace. In Proceedings of IEEE international conference on automation and logistics (pp. 740–743). 1–3 Sept., Qingdao, China.

  • Wang, Y., Mao, Z.-Z., Tian, H.-X., Li, Y., & Yuan, P. (2010). Modeling of electrode system for three-phase electric arc furnace. Journal of Central South University of Technology, 17(3), 560–565.

    Google Scholar 

  • Wang, Z. (2012). Temperature field analysis and adaptive neuro-fuzzy inference system for mgo single crystal production. Journal of Wuhan University of Technology-Mater Sci Ed, 27(6), 1089–1095.

    Google Scholar 

  • Wang, Z., Wang, N. H., & Li, T. (2011). Computational analysis of a twin-electrode dc submerged arc furnace for MgO crystal production. Journal of Materials Processing Technology, 211(3), 388–395.

    Google Scholar 

  • Wang, Z., Fu, Y., Wang, N., & Feng, L. (2014). 3D numerical simulation of electrical arc furnaces for the MgO production. Journal of Materials Processing Technology, 214(11), 2284–2291.

    Google Scholar 

  • Wenger, A., Farouk, B., & Wittle, K. (1996). Modeling of thermal treatment of hazardous solid wastes in a DC arc melter. Journal of the Air & Waste Management Association, 46(12), 1162–1170.

    Google Scholar 

  • White, H. E. (1938). Electrically fused magnesia. Journal of the American Ceramic Society, 21(6), 216–229.

    Google Scholar 

  • Wilhelmi, H., Lyhs, W., & Pfender, E. (1984). Calculation of thermodynamic and transport properties of a typical arc furnace plasma. Plasma Chemistry and Plasma Processing, 4(4), 315–323.

    Google Scholar 

  • Wilson, I. (1981). Magnesium oxide as a high-temperature insulant. IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews), 128(3), 159–164.

    Google Scholar 

  • Wolff, E. G., & Coskren, T. D. (1965). Growth and morphology of magnesium oxide whiskers. Journal of the American Ceramic Society, 48(6), 279–285.

    Google Scholar 

  • Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2(2), 109–123.

    Google Scholar 

  • Wriedt, H. A. (1987). The Mg-O (magnesium-oxygen) system. Bulletin of Alloy Phase Diagrams, 8(3), 227–233.

    Google Scholar 

  • Wu, H.-M., & Carey, G. F. (1992). Nonlinear convective effects on moving boundary ac plasma arcs. IEEE Transactions on Plasma Science, 20(6), 1041–1046.

    Google Scholar 

  • Wu, H. M., Carey, G. F., & Oakes, M. E. (1994). Numerical simulation of AC plasma arc thermodynamics. Journal of Computational Physics, 112(1), 24–30.

    Google Scholar 

  • Wu, Z., Wu, Y., Chai, T., & Sun, J. (2015). Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 62(3), 1703–1715.

    Google Scholar 

  • Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75–86.

    Google Scholar 

  • X, Xu. (2017). Machine tool 4.0 for the new era of manufacturing. The International Journal of Advanced Manufacturing Technology, 92(5–8), 1893–1900.

    Google Scholar 

  • Xu, Y., & Ge, M. (2004). Hidden Markov model-based process monitoring system. Journal of Intelligent Manufacturing, 15(3), 337–350.

    Google Scholar 

  • Yang, W.-A., & Zhou, W. (2015). Autoregressive coefficient-invariant control chart pattern recognition in autocorrelated manufacturing processes using neural network ensemble. Journal of Intelligent Manufacturing, 26(6), 1161–1180.

    Google Scholar 

  • Yetisken, Y., Camdali, U., & Ekmekci, I. (2012). Optimum charging materials for electric arc furnace (EAF) and ladle furnace (LF) system: A sample case. Engineering Science & Technology, an International Journal, 15(2), 77–83.

    Google Scholar 

  • Ying, S., & Hongxia, Y. (2010). The forecasting method for the furnace bottom temperature and carbon content of submerged arc furnace based on improved bp neural network. In Proceedings of international conference on computer, mechatronics, control and electronic engineering (CMCE) (vol. 3, pp. 238–240). 24–26 Aug., Changchun, China, IEEE.

  • Ying, S., Niaona, Z., Xiuhe, L., Hongxia, Y., & Zhiyan, Y. (2010). Power consumption prediction of submerged arc furnace based on multi-input layer wavelet neural network. In Proceedings of international conference on mechanic automation and control engineering (pp. 3586–3589). 26–28 June, Wuhan, China.

  • Zhang, S., Cao, H., Lei, W., & Zhang, Y. (2014). A logistic-interpolation-based fuzzy controller for electrode regulation of submerged arc furnace. In Proceedings of the 26th Chinese control and decision conference (pp. 2388–2392).

  • Zhang, X., Xue, D., Xu, D., Feng, X., & Wang, J. (2005). Growth of large MgO single crystals by an arc-fusion method. Journal of Crystal Growth, 280(1), 234–238.

    Google Scholar 

  • Zhang, X., Xue, D., Wang, J., & Feng, X. (2006). Improved growth technology of large MgO single crystals. Journal of Crystal Growth, 292(2), 505–509.

    Google Scholar 

  • Zhang, X., Zheng, Y., Feng, X., Han, X., Bai, Z., & Zhang, Z. (2015a). Calcination temperature-dependent surface structure and physicochemical properties of magnesium oxide. RSC Advances, 5(105), 86102–86112.

    Google Scholar 

  • Zhang, Y., Wang, C., & Lu, R. (2013a). Modeling and monitoring of multimode process based on subspace separation. Chemical Engineering Research and Design, 91(5), 831–842.

    Google Scholar 

  • Zhang, Z., Wang, Y., & Wang, K. (2013b). Fault diagnosis and prognosis using wavelet packet decomposition, fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24(6), 1213–1227.

    Google Scholar 

  • Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2015). Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cement and Concrete Composites, 62(2015), 97–105.

    Google Scholar 

  • Zhen, W., Ninghui, W., Tie, L., & Yong, C. (2012). 3D numerical analysis of the arc plasma behavior in a submerged DC electric arc furnace for the production of fused MgO. Plasma Science and Technology, 14(4), 321–326.

    Google Scholar 

  • Zheng, T., & Makram, E. B. (2000). An adaptive arc furnace model. IEEE Transactions on Power Delivery, 15(3), 931–939.

    Google Scholar 

  • Zheng, T., Makram, E. B., & Girgis, A. A. (1998). Effect of different arc furnace models on voltage distortion. In Proceedings of 8th international conference on harmonics and quality of power (vol. 2, pp. 1079–1085). 14–16 Oct., Athens, Greece.

  • Zuperl, U., Cus, F., & Reibenschuh, M. (2012). Modeling and adaptive force control of milling by using artificial techniques. Journal of Intelligent Manufacturing, 23(5), 1805–1815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lu, S. & Wang, L. Fused magnesia manufacturing process: a survey. J Intell Manuf 31, 327–350 (2020). https://doi.org/10.1007/s10845-018-1448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1448-1

Keywords

Navigation