Skip to main content
Log in

Machine learning technique for data-driven fault detection of nonlinear processes

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper proposes a new machine learning method for fault detection using a reduced kernel partial least squares (RKPLS), in static and online forms, for handling nonlinear dynamic systems. The choice of the fault detection method has a vital role to improve efficiency and safety as well as production. The kernel partial least squares is a nonlinear extension of partial least squares. The present method has been mostly used as a monitoring method for nonlinear processes. Thus, the standard method cannot perform properly and quickly when the training data set is large. The main contributions of the suggested approach are: the approximation of the components retained by the standard method and the reduction in the computation time as well as the false alarm rate. Using the reduced principal, the online suggested method is presented for fault detection of nonlinear dynamic processes. The online reduced method is developed to monitor the dynamic process online and update the reduced reference model. For this reason, the moving window RKPLS is proposed. The general principle is to check if the new useful observation satisfies, in the feature space, the condition of independencies between variables. Thereafter, the relevance of the suggested methods is used to monitor the chemical stirred tank reactor benchmark process, the air quality and the tennessee eastman process. The simulation results of the suggested methods are compared to the standard one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbas, N., Riaz, M., & Does, R. J. (2014). An EWMA-type control chart for monitoring the process mean using auxiliary information. Communications in Statistics-Theory and Methods, 43(16), 3485–3498.

    Article  Google Scholar 

  • Baffi, G., Martin, E. B., & Morris, A. (1999). Non-linear projection to latent structures revisited: The quadratic PLS algorithm. Computers & Chemical Engineering, 23(3), 395–411.

    Article  Google Scholar 

  • Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., & Dominici, F. (2004). Ozone and short-term mortality in 95 US urban communities, 1987–2000. Jama, 292(19), 2372–2378.

    Article  Google Scholar 

  • Chen, J., Yin, Z., Tang, Y., & Pan, T. (2017). Vis-NIR spectroscopy with moving-window PLS method applied to rapid analysis of whole blood viscosity. Analytical and Bioanalytical Chemistry, 409(10), 2737–2745.

    Article  Google Scholar 

  • Choi, S. W., Lee, C., Lee, J. M., Park, J. H., & Lee, I. B. (2005). Fault detection and identification of nonlinear processes based on kernel PCA. Chemometrics and Intelligent Laboratory Systems, 75(1), 55–67.

    Article  Google Scholar 

  • De Angelo, C. H., Bossio, G. R., Giaccone, S. J., Valla, M. I., Solsona, J. A., & Garcia, G. O. (2009). Online model-based stator-fault detection and identification in induction motors. IEEE Transactions on Industrial Electronics, 56(11), 4671–4680.

    Article  Google Scholar 

  • Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Journal of Process Control, 17(3), 245–255.

    Google Scholar 

  • Fezai, R., Mansouri, M., Taouali, O., Harkat, M. F., & Bouguila, N. (2018). Online reduced kernel principal component analysis for process monitoring. Journal of Process Control, 61, 1–11.

    Article  Google Scholar 

  • Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results. Automatica, 26(3), 459–474.

    Article  Google Scholar 

  • Harkat, M. H., Mourot, G., & Ragot, J. (2006). An improved PCA scheme for sensor FDI: Application to an air quality monitoring network. Journal of Process Control, 16(6), 625–634.

    Article  Google Scholar 

  • He, S. H., He, Z., & Wang, G. A. (2013). Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques. Journal of Intelligent Manufacturing, 24(1), 25–34.

    Article  Google Scholar 

  • Helland, K., Berntsen, H. E., Borgen, O. S., & Martens, H. (1992). Recursive algorithm for partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 14(1–3), 129–137.

    Article  Google Scholar 

  • Isermann, R. (1984). Process fault detection based on modeling and estimation methods: A survey. Automatica, 20(4), 387–404.

    Article  Google Scholar 

  • Jackson, J. E., & Mudholkar, G. S. (1979). Control procedures for residuals associated with principal component analysis. Technometrics, 21(3), 341–349.

    Article  Google Scholar 

  • Jaffel, I., Taouali, O., Elaissi, E., & Messaoud, H. (2013). A new online fault detection method based on PCA technique. IMA Journal of Mathematical Control and Information, 31(4), 487–499.

    Article  Google Scholar 

  • Jaffel, I., Taouali, O., Harkat, M. F., & Messaoud, H. (2016). Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring. ISA Transactions, 64, 184–192.

    Article  Google Scholar 

  • Jaffel, I., Taouali, O., Harkat, M. F., & Messaoud, H. (2017). Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring. The International Journal of Advanced Manufacturing Technology, 88(9–12), 3265–3279.

    Article  Google Scholar 

  • Jalali-Heravi, M., & Kyani, A. (2007). Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: Activity of carbonic anhydrase II inhibitors. European Journal of Medicinal Chemistry, 42(5), 649–659.

    Article  Google Scholar 

  • Jiang, Q., & Yan, X. (2013). Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring. Chemometrics and Intelligent Laboratory Systems, 127, 121–131.

    Article  Google Scholar 

  • Joe Qin, S. (2003). Statistical process monitoring: Basics and beyond. Journal of Chemometrics, 17(8–9), 480–502.

    Article  Google Scholar 

  • Kano, M., Tanaka, S., Hasebe, S., Hashimoto, I., & Ohno, H. (2003). Monitoring independent components for fault detection. AIChE Journal, 49(4), 969–976.

    Article  Google Scholar 

  • Kim, K., Lee, J. M., & Lee, I. B. (2005). A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems, 79(1–2), 22–30.

    Article  Google Scholar 

  • Kresta, J. V., MacGregor, J. F., & Marlin, T. E. (1991). Multivariate statistical monitoring of process operating performance. The Canadian Journal of Chemical Engineering, 69(1), 35–47.

    Article  Google Scholar 

  • Lahdhiri, H., Ben Abdellafou, K., Taouali, O., Mansouri, M., & Korbaa, W. (2018). New online kernel method with the Tabu search algorithm for process monitoring. Transactions of the Institute of Measurement and Control, 0142331218807271.

  • Lahdhiri, H., Taouali, O., Elaissi, I., Jaffel, I., Harakat, M. F., & Messaoud, H. (2017). A new fault detection index based on Mahalanobis distance and kernel method. The International Journal of Advanced Manufacturing Technology, 91(5–8), 2799–2809.

    Article  Google Scholar 

  • Lee, D. S., Lee, M. W., Woo, S. H., Kim, Y. J., & Park, J. M. (2006). Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant. Process Biochemistry, 41(9), 2050–2057.

    Article  Google Scholar 

  • Lee, J., Qin, S. J., & Lee, I. (2006). Fault detection and diagnosis based on modified independent component analysis. AIChE Journal, 52(10), 3501–3514.

    Article  Google Scholar 

  • Li, G., Alcala, C. F., Qin, S. J., & Zhou, D. (2011). Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process. IEEE Transactions on Control Systems Technology, 19(5), 1114–1127.

    Article  Google Scholar 

  • Lindgren, F., Geladi, P., & Wold, S. (1993). The kernel algorithm for PLS. Journal of Chemometrics, 7(1), 45–59.

    Article  Google Scholar 

  • Li, G., Qin, S. J., & Zhou, D. (2010). Geometric properties of partial least squares for process monitoring. Automatica, 46(1), 204–210.

    Article  Google Scholar 

  • Liu, J., Chen, D. S., & Shen, J. F. (2010). Development of self-validating soft sensors using fast moving window partial least squares. Industrial & Engineering Chemistry Research, 49(22), 11530–11546.

    Article  Google Scholar 

  • Lu, S. L., & Tsai, C. F. (2015). Comparison of single EWMA-type control charts based on Economicstatistical design. The Business & Management Review, 6(4), 236.

    Google Scholar 

  • MacGregor, J. F., Jaeckle, C., Kiparissides, C., & Koutoudi, M. (1994). Process monitoring and diagnosis by multiblock PLS methods. AIChE Journal, 40(5), 826–838.

    Article  Google Scholar 

  • Malthouse, E., Tamhane, A., & Mah, R. (1997). Nonlinear partial least squares. Computers & Chemical Engineering, 21(8), 875–890.

    Article  Google Scholar 

  • Marappan, R., & Gopalakrishnan, S. (2018). Solution to graph coloring using genetic and tabu search procedures. Arabian Journal for Science and Engineering, 43(2), 525–542.

    Article  Google Scholar 

  • Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 27(5), 1037–1048.

    Article  Google Scholar 

  • Neffati, S., Abdellafou, K., Taouali, O., & Bouzrara, K. (2019). A new bio-CAD system based on the optimized KPCA for relevant feature selection. The International Journal of Advanced Manufacturing Technology, 102(1–4), 1023–1034.

    Article  Google Scholar 

  • Peng, K., Zhang, K., He, X., Li, G., & Yang, X. (2014). New kernel independent and principal components analysis-based process monitoring approach with application to hot strip mill process. IET Control Theory & Applications, 8(16), 1723–1731.

    Article  Google Scholar 

  • Qin, S. J. (2012). Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 36(2), 220–234.

    Article  Google Scholar 

  • Roberts, S. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239–250.

    Article  Google Scholar 

  • Rosipal, R. (2010). Nonlinear partial least squares: An overview. In Chemoinformatics and advanced machine learning perspectives: Complex computational methods and collaborative techniques, pp. 169–189.

  • Rosipal, R., & Trejo, L. J. (2001). Kernel partial least squares regression in reproducing kernel hilbert space. Journal of Machine Learning Research, 2(Dec), 97–123.

    Google Scholar 

  • Said, M., Fazai, R., Abdellafou, K., & Taouali, O. (2018). Decentralized fault detection and isolation using bond graph and PCA methods. The International Journal of Advanced Manufacturing Technology, 99(1–4), 517–529.

    Article  Google Scholar 

  • Scrich, C. R., Armentano, V. A., & Laguna, M. (2004). Tardiness minimization in a flexible job shop: A tabu search approach. Journal of Intelligent Manufacturing, 15(1), 103–115.

    Article  Google Scholar 

  • Seera, M., Lim, C. P., & Loo, C. K. (2016). Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning. Journal of Intelligent Manufacturing, 27(6), 1273–1285.

    Article  Google Scholar 

  • Shinzawa, H., Jiang, J. H., Ritthiruangdej, P., & Ozaki, Y. (2006). Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. Journal of Chemometrics: A Journal of the Chemometrics Society, 20(8–10), 436–444.

    Article  Google Scholar 

  • Tang, J., Zhang, J., Wu, Z., Liu, Z., Chai, T., & Yu, W. (2017). Modeling collinear data using double-layer GA-based selective ensemble kernel partial least squares algorithm. Neurocomputing, 219, 248–262.

    Article  Google Scholar 

  • Taouali, O., Elaissi, I., & Messaoud, H. (2015). Dimensionality reduction of RKHS model parameters. ISA Transactions, 57, 205–210.

    Article  Google Scholar 

  • Taouali, O., Jaffel, I., Lahdhiri, H., Harkat, M. F., & Messaoud, H. (2016). New fault detection method based on reduced kernel principal component analysis (RKPCA). The International Journal of Advanced Manufacturing Technology, 85(5–8), 1547–1552.

    Article  Google Scholar 

  • Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & Yin, K. (2003). A review of process fault detection and diagnosis: Part III: process history based methods. Computers & Chemical Engineering, 27(3), 327–346.

    Article  Google Scholar 

  • Wang, Q. (2012). Kernel principal component analysis and its applications in face recognition and active shape models. arXiv preprint arXiv:1207.3538

  • Wang, T., Qiao, M., Zhang, M., Yang, Y., & Snoussi, H. (2018). Data-driven prognostic method based on self-supervised learning approaches for fault detection. Journal of Intelligent Manufacturing, 1–9.

  • Willis, A. (2010). Condition monitoring of centrifuge vibrations using kernel PLS. Computers & Chemical Engineering, 34(3), 349–353.

    Article  Google Scholar 

  • Wold, H. (1985). Partial least squares: Encyclopedia of statistical sciences.

  • Wu, C., Chen, T., Jiang, R., Ning, l, & Jiang, Z. (2017). A novel approach to wavelet selection and tree kernel construction for diagnosis of rolling element bearing fault. Journal of Intelligent Manufacturing, 28(8), 1847–1858.

    Article  Google Scholar 

  • Zhang, Y., Du, W., Fan, Y., & Zhang, L. (2015). Process fault detection using directional kernel partial least squares. Industrial & Engineering Chemistry Research, 54(9), 2509–2518.

    Article  Google Scholar 

  • Zhang, Y., & Hu, Z. (2011). Multivariate process monitoring and analysis based on multi-scale KPLS. Chemical Engineering Research and Design, 89(12), 2667–2678.

    Article  Google Scholar 

  • Zhou, D., Li, G., & Qin, S. J. (2010). Total projection to latent structures for process monitoring. AIChE Journal, 56(1), 168–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okba Taouali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, M., Abdellafou, K.b. & Taouali, O. Machine learning technique for data-driven fault detection of nonlinear processes. J Intell Manuf 31, 865–884 (2020). https://doi.org/10.1007/s10845-019-01483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-019-01483-y

Keywords

Navigation