Skip to main content

Advertisement

Log in

Formal modeling of cyber-physical resource scheduling in IIoT cloud environments

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In the recent years, the topic of Industrial Internet of Things (IIoT) has attracted a large number of academic researchers and industry practitioners. IIoT connects the actors, and the physical and cyber resources of industrial systems, manufacturing- or service-based, in a cloud-enabled overall data exchange system. This work outlines a formal model for operational scheduling of cyber-physical resources for different scenarios determined by resource and logistics availability and cost. Information exchange of physical work-in-process, resource failures, alternative resource options, order and logistics information, are used to deliver real-time scheduling to IIoT participants. The model is formalized using discrete state-machine diagrams for resource reliability and availability status, and logistics timing purposes. Low-performance solution invariants are generated and validated through functional requirements test case building. The data exchange network between the processing nodes of the IIoT environment is built on a software-defined network foundation. A simulation is then built for a series of work-in-process orders and their required processing operations, several manufacturing enterprises and associated physical logistics, and the cloud IIoT network cyber infrastructure for data and control information sharing. Both the formalized and the simulation models are run in the IIoT cloud and can be accessed by the participating enterprises. The formalized model provides insights on resource repair or replacement options, part transfer decisions, while the simulation model builds on those decisions and runs only validated scenarios anchored in timing- and cost-based constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdo, H., Kaouk, M., Flaus, J.-M., & Masse, F. (2018). A safety/security risk analysis approach of industrial control systems: a cyber bowtie—combining new version of attack tree with bowtie analysis. Computers and Security,72, 175–195.

    Article  Google Scholar 

  • Ahmed, E., & Rehmani, M. H. (2017). Mobile edge computing: opportunities, solution, and challenges. Future Generation Computing Systems,70, 59–63.

    Article  Google Scholar 

  • Ashibani, Y., & Mahmoud, Q. H. (2017). Cyber physical security: analysis, challenges, and solutions. Computers and Security,68, 81–97.

    Article  Google Scholar 

  • Babiceanu, R. F., & Seker, R. (2016a). Big data and virtualization for manufacturing cyber-physical systems: a survey of the current status and future outlook. Computers in Industry,81, 128–137.

    Article  Google Scholar 

  • Babiceanu, R. F., & Seker, R. (2016b). Secure and resilient manufacturing operations inspired by software-defined networking. Service orientation in holonic and multi-agent manufacturing (pp. 285–294). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Babiceanu, R. F., & Seker, R. (2017a). Trustworthiness requirements for manufacturing cyber-physical systems. Procedia Manufacturing,11, 973–981.

    Article  Google Scholar 

  • Babiceanu, R. F., & Seker, R. (2017b). Cybersecurity and resilience modeling for software-defined networks-based manufacturing applications. Service orientation in holonic and multi-agent manufacturing (pp. 167–176). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Babiceanu, R. F., & Seker, R. (2018). Software-defined networking-based models for secure interoperability of manufacturing operations. Service orientation in holonic and multi-agent manufacturing (pp. 243–252). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Babiceanu, R. F., & Seker, R. (2019). Cyber-physical resource scheduling in the context of Industrial internet of things operations. Service orientation in holonic and multi-agent manufacturing (pp. 399–411). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bakker, O. J., Chaplin, J. C., de Silva, L., Felli, P., Sanderson, D., Logan, B., et al. (2017). Toward process control from formal models of transformable manufacturing systems. Procedia CIRP,63, 521–526.

    Article  Google Scholar 

  • Bal, M., & Hashemipour, M. (2011). Implementation of holonic scheduling and control in flow-line manufacturing systems: die-casting study. Production Planning and Control,22(2), 108–123.

    Article  Google Scholar 

  • Borangiu, T., Trentesaux, D., Thomas, A., Leitao, P., & Barata, J. (2019). Digital transformation of manufacturing through cloud services and resource virtualization. Computers in Industry,108, 150–162.

    Article  Google Scholar 

  • Boyes, H., Hallaq, B., Cunningham, J., & Watson, T. (2018). The industrial internet of things (IIoT): an analysis framework. Computers in Industry,101, 1–12.

    Article  Google Scholar 

  • Evancich, N., & Li, J. (2016). Attacks on industrial control systems. In E. J. M. Colbert & A. Kott (Eds.), Cyber-security of SCADA and other industrial control systems (pp. 95–110). Cham: Springer.

    Chapter  Google Scholar 

  • Fitzgerald, J., Ingram, C., & Romanovsky, A. (2017). Concepts of dependable cyber-physical systems engineering: model-based approaches. Trustworthy cyber-physical engineering (pp. 1–22). Boca Raton: Taylor & Francis Group.

    Google Scholar 

  • Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D. C., & Gayraud, T. (2014). Software-defined networking: challenges and research opportunities for future internet. Computer Networks,75, 453–471.

    Article  Google Scholar 

  • Hatzivasilis, G., Fysarakis, K., Soultatos, O., Askoxylakis, I., Papaefstathiou, I., & Demetriou, G. (2018). The industrial internet of things as an enabler for a circular economy Hy-LP: a novel IIoT protocol, evaluated on a wind park’s SDN/NFV-enabled 5G industrial network. Computer Communications,119, 127–137.

    Article  Google Scholar 

  • Henry, M. H., Zaret, D. R., Carr, J. R., Gordon, D., & Layer, R. M. (2016). Cyber risk in industrial control systems. In E. J. M. Colbert & A. Kott (Eds.), Cyber-security of SCADA and other industrial control systems (pp. 133–166). Cham: Springer.

    Chapter  Google Scholar 

  • Hofmann, E., & Rusch, M. (2017). Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry,89, 23–34.

    Article  Google Scholar 

  • Hu, F., Lu, Y., Vasilakos, A. V., Hao, Q., Ma, R., Patil, Y., et al. (2016). Robust cyber-physical systems: concept, models, and implementation. Future Generation Computer Systems,56, 449–475.

    Article  Google Scholar 

  • Jarraya, Y., Madi, T., & Debbabi, M. (2014). A survey and a layered taxonomy of software-defined networking. IEEE Communications Survey and Tutorials,16(4), 1955–1982.

    Article  Google Scholar 

  • Jeschke, S., Brecher, C., Meisen, T., Ozdemir, D., & Eschert, T. (2017). Industrial internet of things and cyber manufacturing systems (pp. 3–19). Cham: Springer.

    Book  Google Scholar 

  • Kim, D., & Gil, J.-M. (2015). Reliable and fault-tolerant software-defined network operations scheme for remote 3-D printing. Journal of Electronic Materials,44(3), 804–814.

    Article  Google Scholar 

  • Kreutz, D., Ramos, F. M. V., Verissiomo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: a comprehensive survey. Proceedings of the IEEE,103(1), 14–75.

    Article  Google Scholar 

  • Langner, R. (2012). Robust control system network: how to achieve reliable control after Stuxnet. New York: Momentum Press.

    Google Scholar 

  • Liu, X. F., Shahriar, M. R., Al Sunny, S. M. N., Leu, M. C., & Hu, L. (2017). Cyber-physical manufacturing cloud: architecture, virtualization, communication, and testbed. Journal of Manufacturing Systems,43, 352–364.

    Article  Google Scholar 

  • Macaulay, T., & Singer, B. (2012). Cybersecurity for industrial control systems: SCADA, DCS, PLC, HMI, and SIS. Boca Raton: Taylor & Francis Group.

    Google Scholar 

  • Morariu, O., Morariu, C., & Borangiu, T. (2014). Resource, service, and product: real-time Monitoring solution for service oriented holonic manufacturing systems. Service orientation in holonic and multi-agent manufacturing and robotics (pp. 47–62). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Morgan, J., & O’Donnell, G. E. (2018). Cyber physical process monitoring systems. Journal of Intelligent Manufacturing,29(6), 1317–1328.

    Article  Google Scholar 

  • Morreale, P. A., & Anderson, J. M. (2015). Software defined networking design and deployment. Boca Raton: Taylor & Francis Group.

    Google Scholar 

  • O’Donovan, P., Gallagher, C., Bruton, K., & O’Sullivan, D. T. J. (2018). A fog computing industrial cyber-physical system for embedded low-latency machine learning Industry 4.0 applications. Manufacturing Letters,15(B), 139–142.

    Article  Google Scholar 

  • Penas, O., Plateaux, R., Patalano, S., & Hammadi, M. (2017). Multi-scale approach from mechatronic to cyber-physical systems for the design of manufacturing systems. Computers in Industry,86, 52–69.

    Article  Google Scholar 

  • Sampigethaya, K., & Poovendran, R. (2013). Aviation cyber-physical systems: foundations for future aircraft and air transport. Proceedings of the IEEE,101(8), 1834–1855.

    Article  Google Scholar 

  • Schilberg, D., Hoffmann, M., Schmitz, S., & Meisen, T. (2017). Interoperability in smart automation of cyber physical systems. In S. Jeschke, C. Brecher, H. Song, & D. B. Rawat (Eds.), Industrial internet of things cybermanufacturing systems (pp. 261–386). Cham: Springer.

    Chapter  Google Scholar 

  • Schmidt, R., Permin, E., Kerkhoff, J., Plutz, M., & Bockmann, M. G. (2017). Enhancing resiliency in production facilities through cyber physical systems. In S. Jeschke, C. Brecher, H. Song, & D. B. Rawat (Eds.), Industrial internet of things cyber manufacturing systems (pp. 287–313). Cham: Springer.

    Chapter  Google Scholar 

  • Sood, S. K., & Singh, K. D. (2019). SNA based resource optimization in optical network using fog and cloud computing. Optical Switching and Networking,33, 114–121.

    Article  Google Scholar 

  • Sullivan, D., Luiijf, E., & Colbert, E. J. M. (2016). Components of industrial control systems. In E. Colbert & A. Kott (Eds.), Cyber-security of SCADA and other industrial control systems (pp. 15–28). Cham: Springer.

    Chapter  Google Scholar 

  • Talhi, A., Fortineau, V., Huet, J.-C., & Lamouri, S. (2019). Ontology for cloud manufacturing based product lifecycle management. Journal of Intelligent Manufacturing,30(5), 2171–2192.

    Article  Google Scholar 

  • Thames, L., & Schaefer, D. (2016). Software-defined cloud manufacturing for industry 4.0. Procedia CIRP,52, 12–17.

    Article  Google Scholar 

  • Thomas, A., Borangiu, T., & Trentesaux, D. (2017). Holonic and multi-agent technologies for service and computing oriented manufacturing. Journal of Intelligent Manufacturing,28(7), 1501–1502.

    Article  Google Scholar 

  • Vogl, G. W., Weiss, B. A., & Helu, M. (2019). A review of diagnostic and prognostic capabilities and best practices for manufacturing. Journal of Intelligent Manufacturing,30(1), 79–95.

    Article  Google Scholar 

  • Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., et al. (2016). Software-defined industrial internet of things in the context of industry 4.0. IEEE Systems Journal,16(20), 7373–7380.

    Google Scholar 

  • Witkowski, K. (2017). Internet of things, big data, industry 4.0—innovative solutions in logistics and supply chain management. Procedia Manufacturing,182, 763–769.

    Google Scholar 

  • Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., et al. (2017). A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. Journal of Manufacturing Systems,43, 25–34.

    Article  Google Scholar 

  • Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation. Computer Aided Design,59, 1–14.

    Article  Google Scholar 

  • Yao, X., Zhou, J., Lin, Y., Li, Y., Yu, H., & Liu, Y. (2017). Smart manufacturing based on cyber physical systems and beyond. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-017-1384-5.

    Article  Google Scholar 

  • Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2017). Review of job scheduling research and its perspectives under Industry 4.0. Journal of Intelligent Manufacturing,30(4), 1809–1830.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu F. Babiceanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S.B., Babiceanu, R.F. & Seker, R. Formal modeling of cyber-physical resource scheduling in IIoT cloud environments. J Intell Manuf 31, 1149–1164 (2020). https://doi.org/10.1007/s10845-019-01503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-019-01503-x

Keywords

Navigation