Skip to main content
Log in

Dispatching method based on particle swarm optimization for make-to-availability

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Make-to-availability (MTA) is a subtype of make-to-stock that emerged from production, planning, and control system, simplified drum-buffer-rope (S-DBR). The dispatching production order logic of the MTA does not consider the elements present in a wide range of manufacturing systems, such as sequence-dependent setup time. These characteristics generally creates difficulties in the S-DBR, thereby worsening performance indicators, such as mean flow time, setup time, and stock replenishment frequency. Given this research gap, the present study aims to develop a dispatching method for production orders in MTA, based on the particle swarm optimization (PSO) metaheuristic. The dispatching method aims to minimize the mean flow time, setup time, and stock levels in environments with a dependent setup time. To evaluate the performance of the new dispatching method, we used computational simulation to compare this method and the MTA dispatching logic. The results showed that the PSO for sequence achieved better performance, reducing the mean flow time, setup time, and stock level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Tahat, M. D., Dalalah, D., & Barghash, M. A. (2012). Dynamic programming model for multi-stage single-product Kanban-controlled serial production line. Journal of Intelligent Manufacturing, 23(1), 37–48. https://doi.org/10.1007/s10845-009-0336-0.

    Article  Google Scholar 

  • Ali, K. B., Telmoudi, A. J., & Gattoufi, S. (2019). Adopted rescheduling strategy for solving the dynamic job shop using GA based local search. In 2019 international conference on advanced systems and emergent technologies (IC\_ASET), IEEE (pp. 68–73).

  • Baker, K. R., & Trietsch, D. (2009). Principles of sequencing and scheduling. Hoboken: Wiley.

    Book  Google Scholar 

  • Bektur, G., & Saraç, T. (2019). A mathematical model and heuristic algorithms for an unrelated parallel machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common server. Computers & Operations Research, 103, 46–63.

    Article  Google Scholar 

  • Chen, Y., Li, L., Xiao, J., Yang, Y., Liang, J., & Li, T. (2018). Particle swarm optimizer with crossover operation. Engineering Applications of Artificial Intelligence, 70, 159–169. https://doi.org/10.1016/j.engappai.2018.01.009.

    Article  Google Scholar 

  • de Athayde Prata, B., de Abreu, L. R., & Lima, J. Y. F. (2020). Heuristic methods for the single-machine scheduling problem with periodical resource constraints. In TOP (pp. 1–23).

  • Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling—Survey and extensions. European Journal of Operational Research, 99(2), 221–235. https://doi.org/10.1016/S0377-2217(97)00030-1.

    Article  Google Scholar 

  • Gaury, E. G. A., Pierreval, H., & Kleijnen, J. P. C. (2000). An evolutionary approach to select a pull system among Kanban, Conwip and Hybrid. Journal of Intelligent Manufacturing, 11(2), 157–167. https://doi.org/10.1023/A:1008938816257.

    Article  Google Scholar 

  • Ghorbani, M., Arabzad, S. M., Shirouyehzad, H., & Shahin, A. (2014). Developing a logical model for cellular manufacturing systems by theory of constraints thinking process approach. International Journal of Logistics Systems and Management, 18(2), 270–282.

    Article  Google Scholar 

  • Goldratt, E. (2009). Moving from make to stock (MTS) to make to availability (MTA)—GST MTA. https://www.toc-goldratt.com/en/product/the-goldratt-strategy-and-tactic-on-moving-from-make-to-stock-mts-to-make-to-availability-mta.

  • Huang, S., Tian, N., Wang, Y., & Ji, Z. (2016). Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization. SpringerPlus, 5(1), 1432. https://doi.org/10.1186/s40064-016-3054-z.

    Article  Google Scholar 

  • Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: A review. International Journal of Production Research, 46(6), 1619–1643. https://doi.org/10.1080/00207540600902262.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95—international conference on neural networks (Vol. 4, pp. 1942–1948).

  • Khojasteh-Ghamari, Y. (2012). Developing a framework for performance analysis of a production process controlled by Kanban and Conwip. Journal of Intelligent Manufacturing, 23(1), 61–71. https://doi.org/10.1007/s10845-009-0338-y.

    Article  Google Scholar 

  • Korytkowski, P., Rymaszewski, S., & Wiśniewski, T. (2013). Ant colony optimization for job shop scheduling using multi-attribute dispatching rules. The International Journal of Advanced Manufacturing Technology, 67(1–4), 231–241.

    Article  Google Scholar 

  • Lee, J. H., Yu, J. M., & Lee, D. H. (2013). A Tabu search algorithm for unrelated parallel machine scheduling with sequence-and machine-dependent setups: Minimizing total tardiness. The International Journal of Advanced Manufacturing Technology, 69(9–12), 2081–2089.

    Article  Google Scholar 

  • Liang, Y. C., & Cuevas Juarez, J. R. (2016). A novel metaheuristic for continuous optimization problems: Virus optimization algorithm. Engineering Optimization, 48(1), 73–93.

    Article  Google Scholar 

  • Liu, H., Wang, Y., Tu, L., Ding, G., & Hu, Y. (2019). A modified particle swarm optimization for large-scale numerical optimizations and engineering design problems. Journal of Intelligent Manufacturing, 30(6), 2407–2433. https://doi.org/10.1007/s10845-018-1403-1.

    Article  Google Scholar 

  • Marichelvam, M., Geetha, M., & Tosun, Ö. (2020). An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors—A case study. Computers & Operations Research, 114, 104812. https://doi.org/10.1016/j.cor.2019.104812.

    Article  Google Scholar 

  • Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., et al. (2017). Sympy: Symbolic computing in Python. PeerJ Computer Science, 3, e103. https://doi.org/10.7717/peerj-cs.103.

    Article  Google Scholar 

  • Nguyen, S., & Zhang, M. (2017). A PSO-based hyper-heuristic for evolving dispatching rules in job shop scheduling. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 882–889). IEEE. https://doi.org/10.1109/CEC.2017.7969402.

  • Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2018). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603–615. https://doi.org/10.1007/s10845-015-1039-3.

  • Panizzolo, R. (2016). Theory of constraints (ToC) production and manufacturing performance. International Journal of Industrial Engineering and Management, 7(1), 15–23.

    Google Scholar 

  • Qiao, B., Chang, X., Cui, M., & Yao, K. (2013). Hybrid particle swarm algorithm for solving nonlinear constraint optimization problems. WSEAS Transactions on Mathematics, 12(1), 76–84.

    Google Scholar 

  • Rolf, B., Reggelin, T., Nahhas, A., Lang, S., & Müller, M. (2020). Assigning dispatching rules using a genetic algorithm to solve a hybrid flow shop scheduling problem. Procedia Manufacturing, 42, 442–449. https://doi.org/10.1016/j.promfg.2020.02.051.

    Article  Google Scholar 

  • Schragenheim, E. (2002). Make-to-stock under drum-buffer-rope and buffer management methodology. In International conference on proceedings, APICS—Educational Society For Resource Management.

  • Schragenheim, E. (2010). Managing make-to-stock and the concept of make-to-availability. London: McGraw-Hill.

    Google Scholar 

  • Schragenheim, E., Dettmer, H., & Patterson, J. (2009). Supply chain management at warp speed. Boca Raton: Auerbach Publications.

    Book  Google Scholar 

  • Shahzad, A., & Mebarki, N. (2016). Learning dispatching rules for scheduling: A synergistic view comprising decision trees. Tabu Search and Simulation, 5, 3.

    Google Scholar 

  • Shimizu, Y., & Ikeda, M. (2010). A parallel hybrid binary PSO for capacitated logistics network optimization. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 4, 616–626. https://doi.org/10.1299/jamdsm.4.616.

    Article  Google Scholar 

  • Shimizu, Y., Sakaguchi, T., & Miura, T. (2014). Parallel computing for huge scale logistics optimization through binary PSO associated with topological comparison. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 8(1), JAMDSM0005–JAMDSM0005. https://doi.org/10.1299/jamdsm.2014jamdsm0005.

    Article  Google Scholar 

  • Srikun, I., & Sawetsakulanond, B. (2016). A solution for stochastic optimal power flow with integrated wind power generation using a modified cultural-based bee algorithm. Japan: Chiba.

    Google Scholar 

  • Teppan, E. C., & Da Col, G. (2020). Genetic algorithms for creating large job shop dispatching rules. In I. Hatzilygeroudis, I. Perikos, & F. Grivokostopoulou (Eds.), Advances in integrations of intelligent methods. Smart innovation, systems and technologies (Vol. 170). Singapore: Springer. https://doi.org/10.1007/978-981-15-1918-5_7.

    Chapter  Google Scholar 

  • Thürer, M., Qu, T., Stevenson, M., Li, C. D., & Huang, G. Q. (2017). Deconstructing bottleneck shiftiness: The impact of bottleneck position on order release control in pure flow shops. Production Planning & Control, 28(15), 1223–1235. https://doi.org/10.1080/09537287.2017.1362486.

    Article  Google Scholar 

  • Tian, D., & Shi, Z. (2018). MPSO: Modified particle swarm optimization and its applications. Swarm and Evolutionary Computation, 41, 49–68. https://doi.org/10.1016/j.swevo.2018.01.011.

    Article  Google Scholar 

  • Urban, W., & Rogowska, P. (2020). Methodology for bottleneck identification in a production system when implementing TOC. Engineering Management in Production and Services, 12(2), 74–82. https://doi.org/10.2478/emj-2020-0012.

    Article  Google Scholar 

  • Vital-Soto, A., Azab, A., & Baki, M. F. (2020). Mathematical modeling and a hybridized bacterial foraging optimization algorithm for the flexible job-shop scheduling problem with sequencing flexibility. Journal of Manufacturing Systems, 54, 74–93.

    Article  Google Scholar 

  • Wang, X. Y., Liu, Z. W., Jiang, Y., & Sun, L. H. (2008). A fuzzy-PID controller based on particle swarm algorithm. (Vol. 1, pp. 107–110).

  • Xia, X., Xing, Y., Wei, B., Zhang, Y., Li, X., Deng, X., et al. (2019). A fitness-based multi-role particle swarm optimization. Swarm and Evolutionary Computation, 44, 349–364. https://doi.org/10.1016/j.swevo.2018.04.006.

    Article  Google Scholar 

  • Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020). Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. Journal of Intelligent Manufacturing,. https://doi.org/10.1007/s10845-020-01559-0.

    Article  Google Scholar 

  • Zahmani, M. H., & Atmani, B. (2018). Extraction of dispatching rules for single machine total weighted tardiness using a modified genetic algorithm and data mining. International Journal of Manufacturing Research, 13(1), 1. https://doi.org/10.1504/IJMR.2018.092776.

    Article  Google Scholar 

  • Zhang, H., & Roy, U. (2019). A semantics-based dispatching rule selection approach for job shop scheduling. Journal of Intelligent Manufacturing, 30(7), 2759–2779. https://doi.org/10.1007/s10845-018-1421-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Fernandes Tavares-Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author thank CNPq (Process 407104/2016-0), FAPESP (Process 2016/01860-1) and CAPES (Financing Code 001) for funding part of this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, R.F., Godinho-Filho, M. & Tavares-Neto, R.F. Dispatching method based on particle swarm optimization for make-to-availability. J Intell Manuf 33, 1021–1030 (2022). https://doi.org/10.1007/s10845-020-01707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01707-6

Keywords

Navigation