Skip to main content
Log in

RFID systems optimisation through the use of a new RFID network planning algorithm to support the design of receiving gates

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Radio frequency identification (RFID) is a widespread technology used in several different industries. One of its common use cases in logistics is the automation of goods receipt. RFID gates are often deployed, to automatically detect tagged items or load carriers during their passage through the goods receipt gate. At present, however, the design of RFID gates is often based on estimations, and their commissioning is mostly approached via trial and error. Even if the RFID network planning problem is known in the literature, existing algorithms cannot be applied to the design of RFID gates due to some limitations. In this paper, we propose a new evolutionary RFID network planning algorithm to design RFID gates optimally. The objective of our algorithm is to minimise the number of antennas and to adjust their mounting heights and angles. The algorithm ensures a tag coverage of at least 99%, prevents reflections on the ground, and can be used in the future as a standard for planning and commissioning RFID-enabled goods receipt gates. To demonstrate the applicability of our algorithm, we deployed it in a case study involving logistics of the automotive sector. The results of the deployment confirm the quality of our approach, as the RFID gate optimised by the algorithm deployed 4 antennas, with a vertical coverage rate of 99.96%, an horizontal coverage rate of 89.66%, and very interesting values of other evaluation functions, namely load balance and overlapping rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Source Mercedes-Benz AG)

Fig. 12

Similar content being viewed by others

References

  • Abugabah, A., Nizamuddin, N., & Abuqabbeh, A. (2020). A review of challenges and barriers implementing RFID technology in the Healthcare sector. Procedia Computer Science, 170, 1003–1010. https://doi.org/10.1016/j.procs.2020.03.094

    Article  Google Scholar 

  • Bacanin, N., Tuba, M., & Strumberger, I. (2015, March). RFID network planning by ABC algorithm hybridized with heuristic for initial number and locations of readers. In 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim) (pp. 39–44). IEEE.

  • Costa, F., Carvalho, M. D. S., Fernandes, J. M., Alves, A. C., & Silva, P. (2017). Improving visibility using RFID – the case of a company in the automotive sector. Procedia Manufacturing, 13, 1261–1268. https://doi.org/10.1016/j.promfg.2017.09.048

    Article  Google Scholar 

  • Dietz, U. (2019). Wo stößt RFID an seine Grenzen? https://rfid-sicherheit.com/4741-wo-stoesst-rfid-an-seine-grenzen.html (Accessed 13 May 2020).

  • Elewe, A. M., Hasnan, K., & Nawawi, A. (2016). Review of RFID optimal tag coverage algorithms. ARPN Journal of Engineering and Applied Sciences, 11(12), 7706–7711.

    Google Scholar 

  • Esposito, E., Romagnoli, G., Sandri, S., & Villani, L. (2015). Deploying RFID in the fashion and apparel sector: An “in the field” analysis to understand where the technology is going to. Proceedings of the 20th Summer School “F. Turco” in Industrial Mechanical Plants, 2015-January, pp. 7–15

  • Fescioglu-Unver, N., Choi, S. H., Sheen, D., & Kumara, S. (2015). RFID in production and service systems: Technology, applications and issues. Information Systems Frontiers, 17, 1369–1380. https://doi.org/10.1007/s10796-014-9518-1

    Article  Google Scholar 

  • Gong, Y.-J., Shen, M., Zhang, J., Kaynak, O., Chen, W.-N., & Zhan, Z.-H. (2012). Optimizing RFID network planning by using a particle swarm optimization algorithm with redundant reader elimination. IEEE Trans. Ind. Inf., 8, 900–912. https://doi.org/10.1109/TII.2012.2205390

    Article  Google Scholar 

  • Günther, W., Atz, T., Klaubert, C., Salfer, M. (2011). Forschungsbericht: Entwicklung einer Methodik und eines strukturierten Vorgehens zur Abwicklung von Studien zur Prüfung der technischen Machbarkeit für RFID-Projekte in der Intralogistik.

  • Huang, C. T., Lo, L. W., Wang, W. L., & Chen, H. L. (2008, December). A study for optimizing the reading rate of RFID tagged cartons in palletizing process. In 2008 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1138–1142). IEEE.

  • Jaballah, A., & Meddeb, A. (2019). A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem. Wireless Networks, 25, 1585–1604. https://doi.org/10.1007/s11276-017-1616-9

    Article  Google Scholar 

  • Kirch, M., Poenicke, O., & Richter, K. (2017). RFID in logistics and production – applications, research and visions for smart logistics zones. Procedia Engineering, 178, 526–533. https://doi.org/10.1016/j.proeng.2017.01.101

    Article  Google Scholar 

  • Kruse, R., Moewes, C. (2011). Evolutionäre algorithmen: Mehrkriterienoptimierung. Fakultät für Informatik http://fuzzy.cs.ovgu.de/ci/ea/ea2011_v10_pareto.pdf (Accessed 20 September 2020)

  • Moretti, E. D. A., Anholon, R., Rampasso, I. S., Silva, D., Santa-Eulalia, L. A., & Ignácio, P. S. D. A. (2019). Main difficulties during RFID implementation: an exploratory factor analysis approach. Technology Analysis & Strategic Management, 31, 943–956. https://doi.org/10.1080/09537325.2019.1575351

    Article  Google Scholar 

  • Salayong, K., Phaebua, K., Lertwiriyaprapa, T., Boonpoonga, A., Chaiyasang, L., & Kumjinda, A. (2019). Linen Laundry management system in hospital by using UHF-RFID. In 2019 Research, Invention, and Innovation Congress (RI2C) (pp. 1–4). IEEE.

  • Solti, A., Raffel, M., Romagnoli, G., & Mendling, J. (2018). Misplaced product detection using sensor data without planograms. Decision Support Systems, 112, 76–87. https://doi.org/10.1016/j.dss.2018.06.006

    Article  Google Scholar 

  • Strumberger, I., Tuba, E., Bacanin, N., Beko, M., & Tuba, M. (2018). Bare bones fireworks algorithm for the RFID network planning problem. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–8). IEEE

  • Tu, Y. J., Chi, H., Zhou, W., Kapoor, G., Eryarsoy, E., & Piramuthu, S. (2019, November). Critical Evaluation of RFID Applications in Healthcare. In International Conference on Future Network Systems and Security (pp. 240–248). Springer.

  • Tuba, V., Alihodzic, A., & Tuba, M. (2017). Multi-objective RFID network planning with probabilistic coverage model by guided fireworks algorithm. In 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (pp. 882–887). IEEE.

  • Uckelmann, D., & Romagnoli, G. (2016). Rf-based locating of mobile objects. In Proceedings of the 6th International Conference on the Internet of Things (pp. 147–154). https://doi.org/10.1145/2991561.2991565

  • Verein Deutscher Ingenieure, VDI 4472 Blatt 10, 2008.

  • Weicker, N., Szabo, G., Weicker, K., & Widmayer, P. (2003). Evolutionary multiobjective optimization for base station transmitter placement with frequency assignment. IEEE Transactions on Evolutionary Computation, 7, 189–203. https://doi.org/10.1109/TEVC.2003.810760

    Article  Google Scholar 

  • Windmann, S., Niggemann, O., Ruwe, H., & Becker, F. (2017). A novel self-configuration method for RFID systems in industrial production environments. In 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1–5). IEEE

  • Yaacob, M., Daud, S. M., & Azizan, A. (2019). A review of deterministic anti-collision algorithm of passive RFID systems. Open International Journal of Informatics (OIJI), 7(1), 8–25.

    Google Scholar 

  • Yuan, C., Hanning, C., Shen, J., Lin, N., Su, W., Liu, F., & Liang, X. (2019). Indicator-based multi-objective adaptive bacterial foraging algorithm for RFID network planning. Cluster Comput, 22, 12649–12657. https://doi.org/10.1007/s10586-018-1715-0

    Article  Google Scholar 

  • Zahran, E., Arafa, A., Saleh, H., & Dessouky, M. I. (2016). Scientific and technical challenges facing the effective implementation of radio frequency identification (RFID)-based systems. International Journal of Computer Networks and Communications Security, 4, 96–106.

    Google Scholar 

  • Zhao, C., Wu, C., Chai, J., Wang, X., Yang, X., Lee, J.-M., & Kim, M. J. (2017). Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty. Applied Soft Computing, 55, 549–564. https://doi.org/10.1016/j.asoc.2017.02.009

    Article  Google Scholar 

  • Zündor, T., Wagner, D. (2019). Algorithmen für Routenplanung. https://i11www.iti.kit.edu/_media/teaching/sommer2020/routenplanung/chap2-multicriteria.pdf (Accessed 20 September 2020).

Download references

Acknowledgements

We would like to thank Prof. Dr.-Ing. Dieter Uckelmann from the University of Applied Sciences Stuttgart for the support and the supervision and the Mercedes-Benz AG for the funding the Ph.D. position of one of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Romagnoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knapp, H., Romagnoli, G. RFID systems optimisation through the use of a new RFID network planning algorithm to support the design of receiving gates. J Intell Manuf 34, 1389–1407 (2023). https://doi.org/10.1007/s10845-021-01858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01858-0

Keywords

Navigation