Skip to main content
Log in

Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper proposes a new search method based on an augmented version of the Arithmetic Optimization Algorithm to solve various benchmark functions, engineering design cases, and feature selection problems. The proposed method is called MCAOA, combined with the Marine Predators Algorithm and a new proposed Ensemble Mutation Strategy. The Arithmetic Optimization Algorithm is a new meta-heuristic technique used to solve optimization problems. Sometimes, Arithmetic Optimization Algorithm faces convergence problems and falls into local optima for specific optimization problems, especially large-scale and multimodal problems. The Marine Predators Algorithm and Ensemble Mutation Strategy improve the Arithmetic Optimization Algorithm’s convergence rate and equilibrium in the exploration and exploitation search methods. The proposed method is tested on 23 different benchmark functions, seven common engineering design cases, and sixteen feature selection problems. The obtained results are compared with other well-known and state-of-the-art methods. The experimental results indicated that the proposed method found new best solutions for different complicated problems; the general performance is promising compared to other comparative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.

    Article  Google Scholar 

  • Abualigah, L. (2020). Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Computing and Applications, 1–24.

  • Abualigah, L., & Diabat, A. (2020). A comprehensive survey of the grasshopper optimization algorithm: Results, variants, and applications. Neural Computing and Applications, 1–24.

  • Abualigah, L., & Diabat, A. (2020). A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Computing, 1–19.

  • Abualigah, L., & Diabat, A. (2021). Advances in sine cosine algorithm: A comprehensive survey. Artificial Intelligence Review, 1–42.

  • Abualigah, L., Diabat, A., & Geem, Z. W. (2020). A comprehensive survey of the harmony search algorithm in clustering applications. Applied Sciences, 10(11), 3827.

  • Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering

  • Abualigah, L. M., Khader, A. T., & Hanandeh, E. S. (2018). A new feature selection method to improve the document clustering using particle swarm optimization algorithm. Journal of Computational Science, 25, 456–466.

    Article  Google Scholar 

  • Abualigah, L., Shehab, M., Alshinwan, M., & Alabool, H. (2019). Salp swarm algorithm: A comprehensive survey. Neural Computing and Applications, 1–21.

  • Al-Qaness, M. A., Ewees, A. A., Fan, H., Abualigah, L., & Abd Elaziz, M. (2020). Marine predators algorithm for forecasting confirmed cases of COVID-19 in Italy, USA, Iran and Korea. International Journal of Environmental Research and Public Health, 17(10), 3520.

    Article  Google Scholar 

  • Arora, J. S. (2004). Introduction to optimum design. Elsevier.

  • Arora, S., & Anand, P. (2019). Chaotic grasshopper optimization algorithm for global optimization. Neural Computing and Applications, 31(8), 4385–4405.

    Article  Google Scholar 

  • Arora, S., & Anand, P. (2019). Binary butterfly optimization approaches for feature selection. Expert Systems with Applications, 116, 147–160.

    Article  Google Scholar 

  • Baykasoğlu, A., & Akpinar, Ş. (2015). Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems-part 2: Constrained optimization. Applied Soft Computing, 37, 396–415.

    Article  Google Scholar 

  • Baykasoğlu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36, 152–164.

    Article  Google Scholar 

  • Bhesdadiya, R., Trivedi, I. N., Jangir, P., & Jangir, N. (2018). Moth-flame optimizer method for solving constrained engineering optimization problems. In: Advances in computer and computational sciences (pp. 61–68). Springer.

  • Bogar, E., & Beyhan, S. (2020). Adolescent identity search algorithm (AISA): A novel metaheuristic approach for solving optimization problems. Applied Soft Computing, 95, 106503.

    Article  Google Scholar 

  • Brancato, V., Calabrese, L., Palomba, V., Frazzica, A., Fullana-Puig, M., Solé, A., & Cabeza, L. F. (2018). Mgso4\(\cdot \) 7h2o filled macro cellular foams: An innovative composite sorbent for thermo-chemical energy storage applications for solar buildings. Solar Energy, 173, 1278–1286.

    Article  Google Scholar 

  • Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers& Structures, 139, 98–112.

    Article  Google Scholar 

  • Chickermane, H., & Gea, H. (1996). Structural optimization using a new local approximation method. International Journal for Numerical Methods in Engineering, 39(5), 829–846.

    Article  Google Scholar 

  • Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.

    Article  Google Scholar 

  • Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Wiley.

  • Czerniak, J. M., Zarzycki, H., & Ewald, D. (2017). Aao as a new strategy in modeling and simulation of constructional problems optimization. Simulation Modelling Practice and Theory, 76, 22–33.

    Article  Google Scholar 

  • Deb, K., & Srinivasan, A. (2008). Innovization: Discovery of innovative design principles through multiobjective evolutionary optimization. In: Multiobjective problem solving from nature (pp. 243–262). Springer.

  • Deb, K. (1991). Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29(11), 2013–2015.

    Article  Google Scholar 

  • Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.

    Article  Google Scholar 

  • Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Article  Google Scholar 

  • Elaziz, M. A., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.

    Article  Google Scholar 

  • Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371–381.

    Article  Google Scholar 

  • Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers& Structures, 110, 151–166.

    Article  Google Scholar 

  • Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377.

    Article  Google Scholar 

  • Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., & Alizadeh, Y. (2008). Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering, 197(33–40), 3080–3091.

    Article  Google Scholar 

  • Fouad, M. M., El-Desouky, A. I., Al-Hajj, R., & El-Kenawy, E.-S.M. (2020). Dynamic group-based cooperative optimization algorithm. IEEE Access, 8, 148378–148403.

    Article  Google Scholar 

  • Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.

    Article  Google Scholar 

  • Gandomi, A. H., & Deb, K. (2020). Implicit constraints handling for efficient search of feasible solutions. Computer Methods in Applied Mechanics and Engineering, 363, 112917.

    Article  Google Scholar 

  • Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.

    Article  Google Scholar 

  • García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.

    Article  Google Scholar 

  • Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing, 40, 455–467.

    Article  Google Scholar 

  • Hall, M. A., & Smith, L. A. (1999). Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In: FLAIRS conference (Vol. 1999, pp. 235–239).

  • Han, X., Xu, Q., Yue, L., Dong, Y., Xie, G., & Xu, X. (2020). An improved crow search algorithm based on spiral search mechanism for solving numerical and engineering optimization problems. IEEE Access, 8, 92363–92382.

    Google Scholar 

  • He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.

    Article  Google Scholar 

  • He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 186(2), 1407–1422.

    Article  Google Scholar 

  • Houssein, E. H., Saad, M. R., Hashim, F. A., Shaban, H., & Hassaballah, M. (2020). Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 94, 103731.

    Article  Google Scholar 

  • Huang, F.-Z., Wang, L., & He, Q. (2007). An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation, 186(1), 340–356.

    Article  Google Scholar 

  • Kamboj, V. K., Nandi, A., Bhadoria, A., & Sehgal, S. (2020). An intensify harris hawks optimizer for numerical and engineering optimization problems. Applied Soft Computing, 89, 106018.

    Article  Google Scholar 

  • Kashef, S., & Nezamabadi-pour, H. (2015). An advanced ACO algorithm for feature subset selection. Neurocomputing, 147, 271–279.

    Article  Google Scholar 

  • Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray optimization. Computers& Structures, 112, 283–294.

    Article  Google Scholar 

  • Kaveh, A., & Talatahari, S. (2010). An improved ant colony optimization for constrained engineering design problems. Engineering. (Computations).

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE.

  • Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with Applications, 149, 113338.

    Article  Google Scholar 

  • Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36–38), 3902–3933.

    Article  Google Scholar 

  • Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.

  • Ling, Y., Zhou, Y., & Luo, Q. (2017). Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access, 5, 6168–6186.

    Article  Google Scholar 

  • Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.

    Article  Google Scholar 

  • Mack, G. A., & Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor ANOVA. Journal of the American Statistical Association, 75(372), 947–951.

    Article  Google Scholar 

  • Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I., Faris, H., & Ala’M, A.-Z., & Mirjalili, S. (2018). Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems, 145, 25–45.

  • Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation, 188(2), 1567–1579.

    Article  Google Scholar 

  • Mezura-Montes, E., & Coello, C. A. C. (2008). An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems, 37(4), 443–473.

    Article  Google Scholar 

  • Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.

    Article  Google Scholar 

  • Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.

    Article  Google Scholar 

  • Mirjalili, S. (2016). Sca: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.

    Article  Google Scholar 

  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.

    Article  Google Scholar 

  • Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513.

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  • Mohammed, H., & Rashid, T. (2020). A novel hybrid gwo with woa for global numerical optimization and solving pressure vessel design. Neural Computing and Applications, 1–18.

  • Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., & Pasi, G. (2018). Fuzzy self-tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary Computation, 39, 70–85.

    Article  Google Scholar 

  • Qais, M. H., Hasanien, H. M., & Alghuwainem, S. (2020). Transient search optimization: A new meta-heuristic optimization algorithm. Applied Intelligence, 50(11), 3926–3941.

  • Qiao, W., & Yang, Z. (2019). Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm. IEEE Access, 7, 138972–138989.

    Article  Google Scholar 

  • Ragsdell, K., & Phillips, D. (1976). Optimal design of a class of welded structures using geometric programming.

  • Rahkar Farshi, T. (2020). Battle royale optimization algorithm. Neural Computing and Applications, 1–19.

  • Rahman, C. M., & Rashid, T. A. (2020). A new evolutionary algorithm: Learner performance based behavior algorithm. Egyptian Informatics Journal.

  • Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.

    Article  Google Scholar 

  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). Gsa: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.

    Article  Google Scholar 

  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2010). BGSA: Binary gravitational search algorithm. Natural Computing, 9(3), 727–745.

    Article  Google Scholar 

  • Ray, T., & Saini, P. (2001). Engineering design optimization using a swarm with an intelligent information sharing among individuals. Engineering Optimization, 33(6), 735–748.

    Article  Google Scholar 

  • Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.

    Article  Google Scholar 

  • Safaldin, M., Otair, M., & Abualigah, L. (2020). Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 1–18.

  • Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization.

  • Sayed, G. I., Darwish, A., & Hassanien, A. E. (2018). A new chaotic multi-verse optimization algorithm for solving engineering optimization problems. Journal of Experimental& Theoretical Artificial Intelligence, 30(2), 293–317.

    Article  Google Scholar 

  • Tsai, J.-F. (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization, 37(4), 399–409.

    Article  Google Scholar 

  • Wang, G.-G., Lu, M., & Zhao, X.-J. (2016) An improved bat algorithm with variable neighborhood search for global optimization. In. IEEE congress on evolutionary computation (CEC). IEEE (Vol. 2016, pp. 1773–1778).

  • Wang, G.-G., Deb, S., Gandomi, A. H., Zhang, Z., & Alavi, A. H. (2016). Chaotic cuckoo search. Soft Computing, 20(9), 3349–3362.

    Article  Google Scholar 

  • Wang, G.-G., Gandomi, A. H., & Alavi, A. H. (2014). Stud krill herd algorithm. Neurocomputing, 128, 363–370.

    Article  Google Scholar 

  • Wang, G.-G., Gandomi, A. H., Alavi, A. H., & Hao, G.-S. (2014). Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Computing and Applications, 25(2), 297–308.

    Article  Google Scholar 

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  • Xiang, W.-L., & An, M.-Q. (2013). An efficient and robust artificial bee colony algorithm for numerical optimization. Computers& Operations Research, 40(5), 1256–1265.

    Article  Google Scholar 

  • Xin-gang, Z., Ji, L., Jin, M., & Ying, Z. (2020). An improved quantum particle swarm optimization algorithm for environmental economic dispatch. Expert Systems with Applications, 152, 113370.

    Article  Google Scholar 

  • Xu, M., You, X., & Liu, S. (2017). A novel heuristic communication heterogeneous dual population ant colony optimization algorithm. IEEE Access, 5, 18506–18515.

    Article  Google Scholar 

  • Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 178(15), 3043–3074.

    Article  Google Scholar 

  • Zhang, H., Yuan, M., Liang, Y., & Liao, Q. (2018). A novel particle swarm optimization based on prey-predator relationship. Applied Soft Computing, 68, 202–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abualigah, L., Diabat, A. Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications. J Intell Manuf 34, 1833–1874 (2023). https://doi.org/10.1007/s10845-021-01877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01877-x

Keywords

Navigation