Abstract
Additive manufacturing (AM) offers the advantage of producing complex parts more efficiently and in a lesser production cycle time as compared to conventional subtractive manufacturing processes. It also provides higher flexibility for diverse applications by facilitating the use of a variety of materials and different processing technologies. With the exceptional growth of computing capability, researchers are extensively using machine learning (ML) techniques to control the performance of every phase of AM processes, such as design, process parameters modeling, process monitoring and control, quality inspection, and validation. Also, ML methods have made it possible to develop cybermanufacturing for AM systems and thus revolutionized Industry 4.0. This paper presents the state-of-the-art applications of ML in solving numerous problems related to AM processes. We give an overview of the research trends in this domain through a systematic literature review of relevant journal articles and conference papers. We summarize recent development and existing challenges to point out the direction of future research scope. This paper can provide AM researchers and practitioners with the latest information consequential for further development.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akhil, V., Raghav, G., Arunachalam, N., & Srinivas, D. S. (2020). Image data-based surface texture characterization and prediction using machine learning approaches for additive manufacturing. Journal of Computing and Information Science in Engineering, 20(2), 1–16. https://doi.org/10.1115/1.4045719
Alejandrino, J. D., Concepcion II, R. S., Lauguico, S. C., Tobias, R. R., Venancio, L., Macasaet, D., Bandala, A. A., & Dadios, E. P. (2020). A machine learning approach of lattice infill pattern for increasing material efficiency in additive manufacturing processes. International Journal of Mechanical Engineering and Robotics Research 9(9), 1253–1263. https://doi.org/10.18178/ijmerr.9.9.1253-1263
Aljarrah, O., Li, J., Huang, W., Heryudono, A., & Bi, J. (2020). ARIMA-GMDH: A low-order integrated approach for predicting and optimizing the additive manufacturing process parameters. International Journal of Advanced Manufacturing Technology, 106(1–2), 701–717. https://doi.org/10.1007/s00170-019-04315-8
Amini, M., Chang, S. I., & Rao, P. (2019). A cybermanufacturing and AI framework for laser powder bed fusion (LPBF) additive manufacturing process. Manufacturing Letters, 21, 41–44. https://doi.org/10.1016/j.mfglet.2019.08.007
Aminzadeh, M., & Kurfess, K. R. (2018). Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. Journal of Intelligent Manufacturing, 30, 2505–2523. https://doi.org/10.1007/s10845-018-1412-0
Bacha, A., Sabry, A. H., & Benhra, J. (2019). Fault diagnosis in the field of additive manufacturing (3D printing) using bayesian networks. International Journal of Online and Biomedical Engineering (iJOE), 15(03), 110–123. https://doi.org/10.3991/ijoe.v15i03.9375
Ball, A. K., Das, R., Roy, S. S., Kisku, D. R., & Murmu, N. C. (2020). Modeling of EHD inkjet printing performance using soft computing-based approaches. Soft Computing, 24(1), 571–589. https://doi.org/10.1007/s00500-019-04202-0
Banadaki, Y., Razaviarab, N., Fekrmandi, H., & Sharifi, S. (2020). Toward enabling a reliable quality monitoring system for additive manufacturing process using deep convolutional neural networks. arXiv:2003.08749
Barrios, J. M., & Romero, P. E. (2019). Decision tree methods for predicting surface roughness in fused deposition modeling parts. Materials (basel), 12, 2574. https://doi.org/10.3390/ma12162574
Barrrionuevo, G. O., & Ramos-Grez, J. A. (2020). Machine learning for optimizing technological properties of wood composite filament-timberfill fabricated by fused deposition modeling. In M. Botto-Tobar, M. Zambrano Vizuete, P. Torres-Carrión, S. Montes León, G. Pizarro Vásquez, & B. Durakovic (Eds.), Applied technologies. ICAT 2019. Communications in computer and information science (Vol. 1194). Springer.
Baturynska, I. (2019). Application of machine learning techniques to predict the mechanical properties of polyamide 2200 (PA12) in additive manufacturing. Applied Sciences (switzerland). https://doi.org/10.3390/app9061060
Baturynska, I., & Martinsen, K. (2020). Prediction of geometry deviations in additive manufactured parts: Comparison of linear regression with machine learning algorithms. Journal of Intelligent Manufacturing, 32, 179–200. https://doi.org/10.1007/s10845-020-01567-0
Baturynska, I., Semeniuta, O., & Wang, K. (2019) Application of machine learning methods to improve dimensional accuracy in additive manufacturing. In K. Wang, Y. Wang, J. Strandhagen, & T. Yu (Eds.), Advanced manufacturing and automation VIII. IWAMA 2018. Lecture notes in electrical engineering (Vol. 484). Springer.
Bauhofer, A., & Daraio, C. (2020). Neural networks for trajectory evaluation in direct laser writing. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05086-3
Baumann, F. W., Sekulla, A., Hassler, M., Himpel, B., & Pfeil, M. (2018). Trends of machine learning in additive manufacturing. International Journal of Rapid Manufacturing, 7(4), 310. https://doi.org/10.1504/ijrapidm.2018.095788
Baumgartl, H., Tomas, J., Buettner, R., & Merkel, M. (2020). A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-019-00108-3
Bayat, S., Mohseni, M., Behnami, D., & Abolmaesumi, P. (2020). Real-time prediction of temperature distribution in additive manufacturing processes based on machine learning. In Proceedings of the ASME 2020 international mechanical engineering congress and exposition. Vol. 2A: Advanced manufacturing, Virtual, Online, 16–19 November 2020. V02AT02A031. ASME. https://doi.org/10.1115/IMECE2020-24107
Beaman, J. J., Bourell, D. L., Seepersad, C. C., & Kovar, D. (2020). Additive manufacturing review: Early past to current practice. ASME Journal of Manufacturing Science and Engineeering, 142(11), 110812. https://doi.org/10.1115/1.4048193
Becker, P., Roth, C., Roennau, A., & Dillmann, R. (2020). Acoustic anomaly detection in additive manufacturing with long short-term memory neural networks. In IEEE 7th international conference on industrial engineering and applications (ICIEA) (pp. 921–926). https://doi.org/10.1109/ICIEA49774.2020.9102002.
Bhatt, P. M., Malhan, R. K., Rajendran, P., & Gupta, S. K. (2020). Building free-form thin shell parts using supportless extrusion-based additive manufacturing. Additive Manufacturing, 32, 101003. https://doi.org/10.1016/j.addma.2019.101003
Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R., & Teti, R. (2019). Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Annals, 68(1), 451–454. https://doi.org/10.1016/j.cirp.2019.03.021
Caiazzo, F., & Caggiano, A. (2018). Laser direct metal deposition of 2024 Al alloy: Trace geometry prediction via machine learning. Materials. https://doi.org/10.3390/ma11030444
Cao, Y., & Zhang, Z. (2019). A robust tracking of a compliant nanomanipulator-based micro stereo lithography system. In 2019 IEEE international conference on manipulation, manufacturing and measurement on the nanoscale (3M-NANO), Zhenjiang, China, 2019 (pp. 106–111). https://doi.org/10.1109/3M-NANO46308.2019.8947408
Chan, S. L., Lu, Y., & Wang, Y. (2018). Data-driven cost estimation for additive manufacturing in cybermanufacturing. Journal of Manufacturing Systems, 46, 115–126. https://doi.org/10.1016/j.jmsy.2017.12.001
Chen, D., Luo, D., Xu, W., Luo, C., & Shen, L. (2019). Re-perceive 3D printing with artificial intelligence. In Education and research in computer aided architectural design in Europe and XXIII Iberoamerican Society of Digital Graphics, joint conference, Porto, Portugal, 11–13 September 2019, São Paulo, Brazil (pp. 443–450). https://doi.org/10.5151/proceedings-ecaadesigradi2019_034
Chu, A. B., Murialdo, M., Lewicki, J. P., Rodriguez, J. N., Shiflett, M. K., Giera, B., & Kaplan, A. D. (2019). Image classification of clogs in direct ink write additive manufacturing. In Proceedings of the 18th IEEE international conference on machine learning and applications, ICMLA 2019 (pp. 1342–1347). https://doi.org/10.1109/ICMLA.2019.00218
Cui, W., Zhang, Y., Zhang, X., Li, L., & Liou, F. (2020). Metal additive manufacturing parts inspection using convolutional neural network. Applied Sciences (switzerland). https://doi.org/10.3390/app10020545
Davtalab, O., Kazemian, A., Yuan, X., & Khoshnevis, B. (2022). Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection. Journal of Intelligent Manufacturing, 33, 771–784. https://doi.org/10.1007/s10845-020-01684-w
De Souza Borges Ferreira, R., Sabbaghi, A., & Huang, Q. (2019). Automated geometric shape deviation modeling for additive manufacturing systems via Bayesian neural networks. IEEE Transactions on Automation Science and Engineering, 17(2), 1–15. https://doi.org/10.1109/tase.2019.2936821
Decker, N., & Huang, Q. (2019). Geometric accuracy prediction for additive manufacturing through machine learning of triangular mesh data. In ASME 2019 14th international manufacturing science and engineering conference, MSEC 2019 (Vol. 1, 1–9). https://doi.org/10.1115/MSEC2019-3050
Delli, U., & Chang, S. (2018). Automated process monitoring in 3D printing using supervised machine learning. Procedia Manufacturing, 26, 865–870. https://doi.org/10.1016/j.promfg.2018.07.111
Desai, P. S., & Fred Higgs, C. (2019). Spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning. Metals, 9(11), 1–15. https://doi.org/10.3390/met9111176
Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67. https://doi.org/10.1016/j.addma.2017.12.002
Donegan, S. P., Schwalbach, E. J., & Groeber, M. A. (2020). Zoning additive manufacturing process histories using unsupervised machine learning. Materials Characterization, 161, 110123. https://doi.org/10.1016/j.matchar.2020.110123
Doyle, A. C., Egan, D. S., Ryan, C. M., Parnell, A. C., & Dowlinga, D. P. (2021). Application of the STRAY statistical learning algorithm for the evaluation of in-situ process monitoring data during L-PBF additive manufacturing. Procedia Manufacturing, 54, 250–256. https://doi.org/10.1016/j.promfg.2021.07.039
Du, C. J., & Sun, D. W. (2006). Learning techniques used in computer vision for food quality evaluation: A review. Journal of Food Engineering, 72(1), 39–55. https://doi.org/10.1016/j.jfoodeng.2004.11.017
Eastwood, J., Zhang, H., Isa, M., Sims-Waterhouse, D., Leach, R. K., & Piano, S. (2020). Smart photogrammetry for three-dimensional shape measurement. Optics and Photonics for Advanced Dimensional Metrology. https://doi.org/10.1117/12.2556462
Elhoone, H., Zhang, T., Anwar, M., & Desai, S. (2019). Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0. International Journal of Production Research. 58(9), 2841–2861. https://doi.org/10.1080/00207543.2019.1671627
Elsaadouny, M., Barowski, J., & Rolfes, I. (2019). Non-Destructive Testing of 3D-printed Samples based on Machine Learning. In 2019 IEEE MTT-S international microwave workshop series on advanced materials and processes for RF and THz applications (IMWS-AMP), Bochum, Germany, 2019 (pp. 22–24). https://doi.org/10.1109/IMWS-AMP.2019.8880141.
Elwarfalli, H., Papazoglou, D., Erdahl, D., Doll, A., & Speltz, J. (2019). In situ process monitoring for laser-powder bed fusion using convolutional neural networks and infrared tomography. In Proceedings of the IEEE national aerospace electronics conference, 2019-July (pp. 323–327). https://doi.org/10.1109/NAECON46414.2019.9058251
Fergani, O., & Eissing, K. (2020). A machine learning-based digital twin of the manufacturing process: Metal powder-bed fusion case. Engineering Archive. https://doi.org/10.31224/osf.io/736a5
Francis, J., & Bian, L. (2019). Deep learning for distortion prediction in laser-based additive manufacturing using Big Data. Manufacturing Letters, 20, 10–14. https://doi.org/10.1016/j.mfglet.2019.02.001
Gaikwad, A., Yavari, R., Montazeri, M., Cole, K., Bian, L., & Rao, P. (2020). Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults. IISE Transactions. https://doi.org/10.1080/24725854.2019.1701753
Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R., & Phoha, S. (2018). Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Additive Manufacturing, 21(April), 517–528. https://doi.org/10.1016/j.addma.2018.04.005
Gonçalves, D. A., Stemmer, M. R., & Pereira, M. (2020). A convolutional neural network approach on bead geometry estimation for a laser cladding system. International Journal of Advanced Manufacturing Technology, 106(5–6), 1811–1821. https://doi.org/10.1007/s00170-019-04669-z
Gonzalez-Val, C., Pallas, A., Panadeiro, V., & Rodriguez, A. (2020). A convolutional approach to quality monitoring for laser manufacturing. Journal of Intelligent Manufacturing, 31(3), 789–795. https://doi.org/10.1007/s10845-019-01495-8
Grasso, M., & Colosimo, B. M. (2019). A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion. Robotics and Computer-Integrated Manufacturing, 57, 103–115. https://doi.org/10.1016/j.rcim.2018.11.007
Grasso, M., Gallina, F., & Colosimo, B. M. (2018). Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing. Procedia CIRP, 75, 103–107. https://doi.org/10.1016/j.procir.2018.04.045
Guo, Y., Zhao, Z., Han, J., & Bai, L. (2018). Quality monitoring in Wire-Arc additive manufacturing based on spectrum. In ACM international conference proceeding series (pp. 240–244). https://doi.org/10.1145/3301506.3301534
Gupta, N., & Xu, X. (2020). Development of porous composite filament for additive manufacturing of lightweight components. In “Innovative Materials For Additive Manufacturing (IMAM)”, Daniel Schmidt, Luxembourg Institute of Science and Technology, Luxembourg Nikhil Gupta, New York University, USA Chua Chee Kai, NTU, Singapore Brett G. Compton, University of Tennessee, USA Eds, ECI Symposium Series. https://dc.engconfintl.org/imam/13
Han, Y., Griffiths, R., Yu, H., & Zhu, Y. (2020). Quantitative microstructure analysis for solid-state metal additive manufacturing via deep learning. Journal of Materials Research, 35(15), 1936–1948. https://doi.org/10.1557/jmr.2020.120
Hassanin, H., Alkendi, Y., Elsayed, M., Essa, K., & Zweiri, Y. (2020). Controlling the properties of additively manufactured cellular structures using machine learning approaches. Advanced Engineering Materials. https://doi.org/10.1002/adem.201901338
He, H., Yang, Y., & Pan, Y. (2019). Machine learning for continuous liquid interface production: Printing speed modeling. Journal of Manufacturing Systems, 50(January), 236–246. https://doi.org/10.1016/j.jmsy.2019.01.004
He, K., Yang, Z., Bai, Y., Long, J., & Li, C. (2018). Intelligent fault diagnosis of delta 3D printers using attitude sensors based on support vector machines. Sensors (Switzerland), 18(4), 1–15. https://doi.org/10.3390/s18041298
Herriott, C., & Spear, A. D. (2020). Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods. Computational Materials Science, 175, 109599. https://doi.org/10.1016/j.commatsci.2020.109599
Huang, J., Kwok, T. H., Zhou, C., & Xu, W. (2019). Surfel convolutional neural network for support detection in additive manufacturing. International Journal of Advanced Manufacturing Technology, 105(9), 3593–3604. https://doi.org/10.1007/s00170-019-03792-1
Huang, J., Sun, H., Kwok, T. H., Zhou, C., & Xu, W. (2019). Geometric deep learning for shape correspondence in mass customization. In ASME 2019b 14th international manufacturing science and engineering conference, MSEC 2019b (Vol. 1, pp. 1–13). https://doi.org/10.1115/MSEC2019b-3006
Huang, Q., Wang, Y., Lyu, M., & Lin, W. (2020). Shape deviation generator—a convolution framework for learning and predicting 3-D printing shape accuracy. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/tase.2019.2959211
Iquebal, A. S., Botcha, B., & Bukkapatnam, S. (2020). Towards rapid, in situ characterization for materials-on-demand manufacturing. Manufacturing Letters, 23, 29–33. https://doi.org/10.1016/j.mfglet.2019.11.002
Ikeuchi, D., Vargas-Uscategui, A., Wu, X., & King, P. C. (2019). Neural network modeling of track profile in cold spray additive manufacturing. Materials. https://doi.org/10.3390/ma12172827
Jafari-Marandi, R., Khanzadeh, M., Tian, W., Smith, B., & Bian, L. (2019). From in-situ monitoring toward high-throughput process control: Cost-driven decision-making framework for laser-based additive manufacturing. Journal of Manufacturing Systems, 51(February), 29–41. https://doi.org/10.1016/j.jmsy.2019.02.005
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: Springer.
Jayasinghe, S., Paoletti, P., Sutcliffe, C., & Dardis, J. (2020). Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements. Progress in Additive Manufacturing. https://doi.org/10.20944/preprints202004.0055.v1
Jiang, J., Xu, X., Xiong, Y., Tang, Y., Dong, G., & Kim, S. (2020). A novel strategy for multi-part production in additive manufacturing. The International Journal of Advanced Manufacturing Technology, 109(5), 1237–1248. https://doi.org/10.1007/s00170-020-05734-8
Jin, Y., Qin, S. J., & Huang, Q. (2019). Modeling inter-layer interactions for out-of-plane shape deviation reduction in additive manufacturing. IISE Transactions. https://doi.org/10.1080/24725854.2019.1676936
Jin, Z., Zhang, Z., & Gu, G. X. (2019). Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning. Manufacturing Letters, 22, 11–15. https://doi.org/10.1016/j.mfglet.2019.09.005
Jin, Z., Zhang, Z., & Gu, G. X. (2020). Automated real-time detection and prediction of interlayer imperfections in additive manufacturing processes using artificial intelligence. Advanced Intelligent Systems, 2(1), 1900130. https://doi.org/10.1002/aisy.201900130
Kang, Z., Catal, C., & Tekinerdogan, B. (2020). Machine learning applications in production lines: A systematic literature review. Computers & Industrial Engineering, 149, 106773. https://doi.org/10.1016/j.cie.2020.106773
Kappes, B., Moorthy, S., Drake, D., Geerlings, H., & Stebner, A. (2018). Machine learning to optimize additive manufacturing parameters for laser powder bed fusion of Inconel 718. In Proceedings of the 9th international symposium on superalloy 718 & derivatives: Energy, aerospace, and industrial applications (Issue 800). Springer. https://doi.org/10.1007/978-3-319-89480-5
Khanzadeh, M., Chowdhury, S., Marufuzzaman, M., Tschopp, M. A., & Bian, L. (2018). Porosity prediction: Supervised-learning of thermal history for direct laser deposition. Journal of Manufacturing Systems, 47, 69–82. https://doi.org/10.1016/j.jmsy.2018.04.001
Khorasani, A. M., Gibson, I., Ghasemi, A. H., & Ghaderi, A. (2020). Modeling of laser powder bed fusion process and analysing the effective parameters on surface characteristics of Ti–6Al–4V. International Journal of Mechanical Sciences, 168, 105299. https://doi.org/10.1016/j.ijmecsci.2019.105299
Ko, H., Witherell, P., Ndiaye, N. Y., & Lu, Y. (2019). Machine learning based continuous knowledge engineering for additive manufacturing. In IEEE international conference on automation science and engineering, 2019-August (pp. 648–654). https://doi.org/10.1109/COASE.2019.8843316
Kwon, O., Kim, H. G., Ham, M. J., Kim, W., Kim, G. H., Cho, J. H., Kim, N. I., & Kim, K. (2020). A deep neural network for classification of melt-pool images in metal additive manufacturing. Journal of Intelligent Manufacturing, 31(2), 375–386. https://doi.org/10.1007/s10845-018-1451-6
Lao, W., Li, M., Wong, T. N., Tan, M. J., & Tjahjowidodo, T. (2020). Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control. Virtual and Physical Prototyping. https://doi.org/10.1080/17452759.2020.1713580
Lee, S., Peng, J., Shin, D., & Choi, Y. S. (2019). Data analytics approach for melt-pool geometries in metal additive manufacturing. Science and Technology of Advanced Materials, 20(1), 972–978. https://doi.org/10.1080/14686996.2019.1671140
Lee, S. H. (2020). Optimization of cold metal transfer-based wire arc additive manufacturing processes using Gaussian process regression. Metals, 10(4), 461. https://doi.org/10.3390/met10040461
Lemos, C. B., Farias, P. C. M. A., Filho, E. F. S., & Conceicao, A. G. S. (2020). Convolutional neural network based object detection for additive manufacturing. In 19th international conference on advanced robotics (ICAR), 2019 (pp. 420–425). https://doi.org/10.1109/ICAR46387.2019.8981618
Li, C., Cabrera, D., & Sancho, F. (2019). Fusing convolutional generative adversarial encoders for 3D printer fault detection with only normal signals. Mechanical Systems and Signal Processing. https://doi.org/10.13140/RG.2.2.22993.89446.
Li, F., Yu, Z., Shen, X., & Zhang, H. (2019). Status recognition for fused deposition modeling manufactured parts based on acoustic emission. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/2019b9501005
Li, J. (2020). Predictive multiscale modeling of 3D printed polymers for enhanced fracture performance, January, 1–20. https://doi.org/10.2514/6.2020-0654
Li, J., Sage, M., Guan, X., Brochu, M., & Zhao, Y. F. (2020). Machine learning-enabled competitive grain growth behavior study in directed energy deposition fabricated Ti6Al4V. JOM Journal of the Minerals Metals and Materials Society, 72(1), 458–464. https://doi.org/10.1007/s11837-019-03917-7
Li, X., Jia, X., Yang, Q., & Lee, J. (2020). Quality analysis in metal additive manufacturing with deep learning. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01549-2
Li, Y., Yan, H., & Zhang, Y. (2019). A deep learning method for material performance recognition in laser additive manufacturing. In IEEE international conference on industrial informatics (INDIN), 2019-July (pp. 1735–1740). https://doi.org/10.1109/INDIN41052.2019.8972334
Li, Y., Zhao, W., Li, Q., Wang, T., & Wang, G. (2019). In-situ monitoring and diagnosing for fused filament fabrication process based on vibration sensors. Sensors. https://doi.org/10.3390/s19112589
Li, Z., Zhang, Z., Shi, J., & Wu, D. (2019). Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robotics and Computer-Integrated Manufacturing, 57, 488–495. https://doi.org/10.1016/j.rcim.2019.01.004
Liu, T., Huang, L., & Chen, B. (2019). Real-time defect detection of laser additive manufacturing based on support vector machine. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1213/5/052043
Liu, Z., Li, M., Weng, Y., Qian, Y., Wong, T. N., & Tan, M. J. (2020). Modeling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine. Composites Part B: Engineering, 193(March), 108018. https://doi.org/10.1016/j.compositesb.2020.108018
Lo, Y. L., Liu, B. Y., & Tran, H. C. (2019). Optimized hatch space selection in double-scanning track selective laser melting process. International Journal of Advanced Manufacturing Technology, 105(7–8), 2989–3006. https://doi.org/10.1007/s00170-019-04456-w
Ma, X., Li, Z., Li, H., An, Q., Qiu, Q., Xu, W., & Wang, Y. (2020). Database and benchmark for early-stage malicious activity detection in 3D printing. In 2020 25th Asia and South Pacific design automation conference (ASP-DAC) (pp. 494–499). https://doi.org/10.1109/asp-dac47756.2020.9045180
Mahato, V., Obeidi, M. A., Brabazon, D., & Cunnningham, P. (2022). Detecting voids in 3D printing using melt pool time series data. Journal of Intelligent Manufacturing, 33, 845–852. https://doi.org/10.1007/s10845-020-01694-8
Mahmoudi, M., Ezzat, A. A., & Elwany, A. (2019). Layerwise anomaly detection in laser powder-bed fusion metal additive manufacturing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 141(3), 1–21. https://doi.org/10.1115/1.4042108
Mahmoudi, M., Tapia, G., Franco, B., Ma, J., Arroyave, R., Karaman, I., & Elwany, A. (2018). On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. Journal of Manufacturing Processes, 35(February), 672–680. https://doi.org/10.1016/j.jmapro.2018.08.037
Malik, A., Lhachemi, H., & Shorten, R. (2020). I-nteract: A cyber-physical system for real-time interaction with physical and virtual objects using mixed reality technologies for additive manufacturing. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2997533
Malviya, M., & Desai, K. A. (2020). Build orientation optimization for strength enhancement of fdm parts using machine learning based algorithm. Computer-Aided Design and Applications, 17(4), 783–796. https://doi.org/10.14733/cadaps.2020.783-796
Marrey, M., Malekipour, E., El-Mounayri, H., & Faierson, E. J. (2019). A framework for optimizing process parameters in powder bed fusion (PBF) process using artificial neural network (ANN). Procedia Manufacturing, 34, 505–515. https://doi.org/10.1016/j.promfg.2019.06.214
Mehrpouya, M., Gisario, A., Rahimzadeh, A., Nematollahi, M., Baghbaderani, K. S., & Elahinia, M. (2019). A prediction model for finding the optimal laser parameters in additive manufacturing of NiTi shape memory alloy. International Journal of Advanced Manufacturing Technology, 105(11), 4691–4699. https://doi.org/10.1007/s00170-019-04596-z
Meng, L., & Zhang, J. (2020). Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. JOM Journal of the Minerals Metals and Materials Society, 72(1), 420–428. https://doi.org/10.1007/s11837-019-03792-2
Mitchell, J. A., Ivanoff, T. A., Dagel, D., Madison, J. D., & Jared, B. (2020). Linking pyrometry to porosity in additively manufactured metals. Additive Manufacturing, 31, 100946. https://doi.org/10.1016/j.addma.2019.100946
Molero, E., Jes, J., Rodr, O., Guerrero-vaca, G., & Romero, P. E. (2020). Use of data mining techniques for the prediction of surface roughness of printed parts in polylactic acid (PLA) by fused deposition modeling (FDM): A practical application in frame glasses manufacturing. Polymers (basel), 12(4), E840. https://doi.org/10.3390/polym12040840
Mondal, S., Gwynn, D., Ray, A., & Basak, A. (2020). Investigation of melt pool geometry control in additive manufacturing using hybrid modeling. Metals, 10, 683. https://doi.org/10.3390/met10050683
Montazeri, M., Nassar, A. R., Dunbar, A. J., & Rao, P. (2020). In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy. IISE Transactions, 52(5), 500–515. https://doi.org/10.1080/24725854.2019.1659525
Montazeri, M., Nassar, A. R., Stutzman, C. B., & Rao, P. (2019). Heterogeneous sensor-based condition monitoring in directed energy deposition. Additive Manufacturing, 30(March), 100916. https://doi.org/10.1016/j.addma.2019.100916
Montazeri, M., & Rao, P. (2018). Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach. Journal of Manufacturing Science and Engineering, Transactions of the ASME. https://doi.org/10.1115/1.4040264
Mozaffar, M., Paul, A., Al-Bahrani, R., Wolff, S., Choudhary, A., Agrawal, A., Ehmann, K., & Cao, J. (2018). Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manufacturing Letters, 18, 35–39. https://doi.org/10.1016/j.mfglet.2018.10.002
Mycroft, W., Katzman, M., Tammas-Williams, S., Hernandez-Nava, E., Panoutsos, G., Todd, I., & Kadirkamanathan, V. (2020). A data-driven approach for predicting printability in metal additive manufacturing processes. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01541-w
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2, 1. https://doi.org/10.1186/s40537-014-0007-7
Nam, J., Jo, N., Kim, J. S., & Lee, S. W. (2020). Development of a health monitoring and diagnosis framework for fused deposition modeling process based on a machine learning algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 234(1–2), 324–332. https://doi.org/10.1177/0954405419855224
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
Nguyen, L., Buhl, J., & Bambach, M. (2020). Continuous Eulerian tool path strategies for wire-arc additive manufacturing of rib-web structures with machine-learning-based adaptive void filling. Additive Manufacturing, 35, 101265. https://doi.org/10.1016/j.addma.2020.101265
Nikam, S. H., Jain, N. K., & Sawant, M. S. (2020). Optimization of parameters of micro-plasma transferred arc additive manufacturing process using real coded genetic algorithm. The International Journal of Advanced Manufacturing Technology, 106, 1239–1252. https://doi.org/10.1007/s00170-019-04658-2
Okaro, I. A., Jayasinghe, S., Sutcliffe, C., Black, K., Paoletti, P., & Green, P. L. (2019). Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Additive Manufacturing, 27(February), 42–53. https://doi.org/10.1016/j.addma.2019.01.006
Olleak, A., & Xi, Z. (2020). Calibration and validation framework for selective laser melting process based on multi-fidelity models and limited experiment data. Journal of Mechanical Design, Transactions of the ASME. https://doi.org/10.1115/1.4045744
Özel, T., Altay, A., Kaftanoğlu, B., Leach, R., Senin, N., & Donmez, A. (2020). Focus variation measurement and prediction of surface texture parameters using machine learning in laser powder bed fusion. Journal of Manufacturing Science and Engineering. https://doi.org/10.1115/1.4045415
Page, T. D., Yang, S., & Zhao, Y. F. (2019). Automated candidate detection for additive manufacturing: A framework proposal. In Proceedings of the international conference on engineering design, ICED, 2019-August (pp. 679–688). https://doi.org/10.1017/dsi.2019.72
Patel, S., Mekavibul, J., Park, J., Kolla, A., French, R., Kersey, Z., & Lewin, G. C. (2019). Using machine learning to analyze image data from advanced manufacturing processes. In 2019 systems and information engineering design symposium, SIEDS 2019 (pp. 1–5). https://doi.org/10.1109/SIEDS.2019.8735603
Paul, A., Mozaffar, M., Yang, Z., Liao, W. K., Choudhary, A., Cao, J., & Agrawal, A. (2019). A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes. In Proceedings of 2019 IEEE international conference on data science and advanced analytics, DSAA 2019 (pp. 541–550). https://doi.org/10.1109/DSAA.2019.00069
Pazhamannil, R. V., Govindan, P., & Sooraj, P. (2021). Prediction of the tensile strength of polylactic acid fused deposition models using artificial neural network technique. Materials Today: Proceedings, 46(19), 9187–9193. https://doi.org/10.1016/j.matpr.2020.01.199
Qin, J., Liu, Y., Grosvenor, R., Lacan, F., & Jiang, Z. (2020). Deep learning-driven particle swarm optimisation for additive manufacturing energy optimisation. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118702
Rajpurohit, S. R., & Dave, H. K. (2020). Prediction and optimization of tensile strength in FDM based 3D printing using ANFIS. In Optimization of manufacturing processes. Springer series in advanced manufacturing. Springer. https://doi.org/10.1007/978-3-030-19638-7_5
Razvi, S. S., Feng, S., Narayan, A., Lee, Y.-T. T., & Witherell, P. (2019). A review of machine learning applications in additive manufacturing. In Proceedings of the ASME 2019 international design engineering technical conferences and computers and information in engineering conference. Vol. 1: 39th computers and information in engineering conference. Anaheim, CA, USA. August 18–21, 2019. V001T02A040. ASME. https://doi.org/10.1115/DETC2019-98415
Reisch, R., Hauser, T., Lutz, B., Pantano, M., Kamps, T., & Knoll, A. (2020). Distance-based multivariate anomaly detection in wire arc additive manufacturing. In 19th IEEE international conference on machine learning and applications (ICMLA) (pp. 659–664). https://doi.org/10.1109/ICMLA51294.2020.00109.
Ren, K., Chew, Y., Zhang, Y. F., Fuh, J. Y. H., & Bi, G. J. (2020). Thermal field prediction for laser scanning paths in laser aided additive manufacturing by physics-based machine learning. Computer Methods in Applied Mechanics and Engineering, 362, 112734. https://doi.org/10.1016/j.cma.2019.112734
Roy, M., & Wodo, O. (2020). Data-driven modeling of thermal history in additive manufacturing. Additive Manufacturing, 32, 101017. https://doi.org/10.1016/j.addma.2019.101017
Sai, T., Pathak, V. K., & Srivastava, A. K. (2020). Modeling and optimization of fused deposition modeling (FDM) process through printing PLA implants using adaptive neuro-fuzzy inference system (ANFIS) model and whale optimization algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering., 42, 617. https://doi.org/10.1007/s40430-020-02699-3
Sandhu, K., Singh, S., & Prakash, C. (2019). Analysis of angular shrinkage of fused filament fabricated poly-lactic-acid prints and its relationship with other process parameters. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/561/1/012058
Scime, L., & Beuth, J. (2018). A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, 273–286. https://doi.org/10.1016/j.addma.2018.09.034
Scime, L., & Beuth, J. (2019). Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 25, 151–165. https://doi.org/10.1016/j.addma.2018.11.010
Seifi, S. H., Tian, W., Doude, H., Tschopp, M. A., & Bian, L. (2019). Layer-wise modeling and anomaly detection for laser-based additive manufacturing. ASME Journal of Manufacturing Science and Engineering, 141(8), 081013. https://doi.org/10.1115/1.4043898
Shen, Z., Shang, X., Zhao, M., Dong, X., Xiong, G., & Wang, F. Y. (2019). A learning-based framework for error compensation in 3D printing. IEEE Transactions on Cybernetics, 49(11), 4042–4050. https://doi.org/10.1109/TCYB.2019.2898553
Shevchik, S., Le-Quang, T., Meylan, B., Farahani, F. V., Olbinado, M. P., Rack, A., Masinelli, G., Leinenbach, C., & Wasmer, K. (2020). Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance. Scientific Reports, 10(1), 3389. https://doi.org/10.1038/s41598-020-60294-x
Siegel, J. E., Beemer, M. F., & Shepard, S. M. (2020). Automated non-destructive inspection of Fused Filament Fabrication components using Thermographic Signal Reconstruction. Additive Manufacturing, 31, 100923. https://doi.org/10.1016/j.addma.2019.100923
Silbernagel, C., Aremu, A., & Ashcroft, I. (2019). Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing. Rapid Prototyping Journal. https://doi.org/10.1108/RPJ-08-2019-0213
Snell, R., Tammas-Williams, S., Chechik, L., Lyle, A., Hernández-Nava, E., Boig, C., Panoutsos, G., & Todd, I. (2020). Methods for rapid pore classification in metal additive manufacturing. JOM Journal of the Minerals Metals and Materials Society, 72(1), 101–109. https://doi.org/10.1007/s11837-019-03761-9
Sohnius, F., Schlegel, P., Ellerich, M., & Schmitt, R. H. (2019). Data-driven prediction of surface quality in fused deposition modeling using machine learning. Production at the Leading Edge of Technology. https://doi.org/10.1007/978-3-662-60417-5_47
Stanisavljevic, D., Cemernek, D., Gursch, H., Urak, G., & Lechner, G. (2019). Detection of interferences in an additive manufacturing process: An experimental study integrating methods of feature selection and machine learning. International Journal of Production Research., 58(9), 2862–2884. https://doi.org/10.1080/00207543.2019.1694719
Stathatos, E., & Vosniakos, G. C. (2019). Real-time simulation for long paths in laser-based additive manufacturing: A machine learning approach. International Journal of Advanced Manufacturing Technology, 104(5–8), 1967–1984. https://doi.org/10.1007/s00170-019-04004-6
Syam, W. P., Leach, R., Rybalcenko, K., Gaio, A., & Crabtree, J. (2018). In-process measurement of the surface quality for a novel finishing process for polymer additive manufacturing. Procedia CIRP, 75, 108–113. https://doi.org/10.1016/j.procir.2018.04.088
Tan, Y., Jin, B., Nettekoven, A., Chen, Y., Yue, Y., Topcu, U., & Sangiovanni-Vincentelli, A. (2019). An encoder-decoder based approach for anomaly detection with application in additive manufacturing. In Proceedings of the 18th IEEE international conference on machine learning and applications, ICMLA 2019 (Vol. 1645964, pp. 1008–1015). https://doi.org/10.1109/ICMLA.2019.00171
Thomas, D. (2016). Costs, benefits, and adoption of additive manufacturing: A supply chain perspective. The International Journal of Advanced Manufacturing Technology, 85, 1857–1876. https://doi.org/10.1007/s00170-015-7973-6
Tranfield, D., Denyer, D., Smart, P., Goodhue, D. L., & Thompson, R. L. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14, 207–222. https://doi.org/10.1111/1467-8551.00375
Trinks, S., & Felden, C. (2019). Image mining for real time quality assurance in rapid prototyping. In IEEE international conference on Big Data (Big Data) (pp. 3529–3553). https://doi.org/10.1109/BigData47090.2019.9005514
Uhlmann, E., Pontes, R. P., Geisert, C., & Hohwieler, E. (2018). Cluster identification of sensor data for predictive maintenance in a Selective Laser Melting machine tool. Procedia Manufacturing, 24, 60–65. https://doi.org/10.1016/j.promfg.2018.06.009
Wang, T., Kwok, T. H., Zhou, C., & Vader, S. (2018). In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing. Journal of Manufacturing Systems, 47, 83–92. https://doi.org/10.1016/j.jmsy.2018.04.003
Wasmer, K., Le-Quang, T., Meylan, B., & Shevchik, S. A. (2019). In situ quality monitoring in AM using acoustic emission: A reinforcement learning approach. Journal of Materials Engineering and Performance, 28(2), 666–672. https://doi.org/10.1007/s11665-018-3690-2
Wasmer, K., Le-Quang, T., Meylan, B., Vakili-Farahani, F., Olbinado, M. P., Rack, A., & Shevchik, S. A. (2018). Laser processing quality monitoring by combining acoustic emission and machine learning: A high-speed X-ray imaging approach. Procedia CIRP, 74, 654–658. https://doi.org/10.1016/j.procir.2018.08.054
Wei, H., Shirinzadeh, B., Niu, X., Zhang, J., Li, W., & Simeone, A. (2020). Study of the hinge thickness deviation for a 316L parallelogram flexure mechanism fabricated via selective laser melting. Journal of Intelligent Manufacturing, 32, 1411–1420. https://doi.org/10.1007/s10845-020-01621-x
Wu, D., Wei, Y., & Terpenny, J. (2018). Surface roughness prediction in additive manufacturing using machine learning. In ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018 (Vol. 3, pp. 1–6). https://doi.org/10.1115/MSEC2018-6501
Wu, M., & Moon, Y. B. (2019). Intrusion detection system for cyber-manufacturing system. ASME Journal of Manufacturing Science and Engineering., 141(3), 031007. https://doi.org/10.1115/1.4042053
Wu, M., Song, Z., & Moon, Y. B. (2019). Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods. Journal of Intelligent Manufacturing, 30, 1111–1123. https://doi.org/10.1007/s10845-017-1315-5
Xiao, L., Lu, M., & Huang, H. (2020). Detection of powder bed defects in selective laser sintering using convolutional neural network. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-05205-0
Xiong, J., Zhang, Y., & Pi, Y. (2020). Control of deposition height in WAAM using visual inspection of previous and current layers. Journal of Intelligent Manufacturing, 32, 2209–2217. https://doi.org/10.1007/s10845-020-01634-6
Yadav, D., Chhabra, D., Gupta, R. K., Phogat, A., & Ahlawat, A. (2020). Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS. Materials Today: Proceedings, 21, 1592–1604. https://doi.org/10.1016/j.matpr.2019.11.227
Yang, S., Page, T., Zhang, Y., & Zhao, Y. F. (2020). Towards an automated decision support system for the identification of additive manufacturing part candidates. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01545-6
Yang, Y., He, M., & Li, L. (2020). Power consumption estimation for mask image projection stereolithography additive manufacturing using machine learning based approach. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119710
Yang, Z., Lu, Y., Yeung, H., & Krishnamurty, S. (2019). Investigation of deep learning for real-time melt pool classification in additive manufacturing. In IEEE international conference on automation science and engineering, 2019-August (pp. 640–647). https://doi.org/10.1109/COASE.2019.8843291
Yazdi, R. M., Imani, F., & Yang, H. (2020). A hybrid deep learning model of process-build interactions in additive manufacturing. Journal of Manufacturing Systems, 57, 460–468. https://doi.org/10.1016/j.jmsy.2020.11.001
Ye, Z., Liu, C., Tian, W., & Kan, C. (2020). A deep learning approach for the identification of small process shifts in additive manufacturing using 3D point clouds. Procedia Manufacturing, 48, 770–775. https://doi.org/10.1016/j.promfg.2020.05.112
Yi, L., Gläßner, C., Krenkel, N., & Aurich, J. C. (2020). Energy simulation of the fused deposition modeling process using machine learning approach. Procedia CIRP, 86, 216–221. https://doi.org/10.1016/j.procir.2020.01.002
Yi, Y., Xie, R., & Yang, H. (2020). The estimation of the laser point temperature based on CNN (convolutional neural network). IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/740/1/012023
You, S., Guan, J., Alido, J., Hwang, H. H., Yu, R., Kwe, L., Su, H., & Chen, S. (2020). Mitigating scattering effects in light-based 3D printing using machine learning. Journal of Manufacturing Science and Engineering, 142(8), 1002. https://doi.org/10.1115/1.4046986
Yuan, B., Guss, G., Wilson, A., Depond, P., Mcmains, S., Matthews, M., & Giera, B. (2018). Machine-learning-based monitoring of laser powder bed fusion. Advanced Materials and Technologies. https://doi.org/10.1002/admt.201800136
Zhang, B., Hong, K. M., & Shin, Y. C. (2020). Deep-learning-based porosity monitoring of laser welding process. Manufacturing Letters, 23, 62–66. https://doi.org/10.1016/j.mfglet.2020.01.001
Zhang, H., Moon, S. K., Ngo, T. H., Tou, J., & Bin Mohamed Yusoff, M. A. (2020). Rapid process modeling of the aerosol jet printing based on Gaussian process regression with Latin hypercube sampling. International Journal of Precision Engineering and Manufacturing, 21(1), 127–136. https://doi.org/10.1007/s12541-019-00237-3
Zhang, J., Wang, P., & Gao, R. X. (2018). Modeling of layer-wise additive manufacturing for part quality prediction. Procedia Manufacturing, 16, 155–162. https://doi.org/10.1016/j.promfg.2018.10.165
Zhang, M., Sun, C. N., Zhang, X., Goh, P. C., Wei, J., Hardacre, D., & Li, H. (2019). High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. International Journal of Fatigue, 128(May), 105194. https://doi.org/10.1016/j.ijfatigue.2019.105194
Zhang, Y., Dong, G., Yang, S., & Zhao, Y. F. (2019). Machine learning assisted prediction of the manufacturability of laser-based powder bed fusion process. In Proceedings of the ASME Design Engineering Technical Conference (Vol. 1, pp. 1–10). https://doi.org/10.1115/DETC2019-97610
Zhang, Y., Hong, G. S., Ye, D., Fuh, J. Y. H., & Zhu, K. (2019). Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks. IEEE Transactions on Industrial Informatics, 16(9), 5769–5779. https://doi.org/10.1109/tii.2019.2956078
Zhang, Z., Li, B., Zhang, W., Lu, R., Wada, S., & Zhang, Y. (2020). Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks. Journal of Manufacturing Systems, 54(January), 348–360. https://doi.org/10.1016/j.jmsy.2020.01.006
Zhang, Z., Poudel, L., Sha, Z., Zhou, W., & Wu, D. (2020). Data-driven predictive modeling of tensile behavior of parts fabricated by cooperative 3D printing. Journal of Computing and Information Science in Engineering, 20(2), 1–10. https://doi.org/10.1115/1.4045290
Zhang, Z., Ren, W., Yang, Z., & Wen, G. (2020). Real-time seam defect identification for Al alloys in robotic arc welding using optical spectroscopy and integrating learning. Measurement: Journal of the International Measurement Confederation, 156, 107546. https://doi.org/10.1016/j.measurement.2020.107546
Zhu, Y., Wu, Z., Hartley, W. D., Sietins, J. M., Williams, C. B., & Yu, H. Z. (2020). Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning. Additive Manufacturing, 30, 101183. https://doi.org/10.1016/j.addma.2020.101183
Zhu, Z., Anwer, N., Huang, Q., & Mathieu, L. (2018). Machine learning in tolerancing for additive manufacturing. CIRP Annals, 67(1), 157–160. https://doi.org/10.1016/j.cirp.2018.04.119
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no potential conflict of interest or financial conflict to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xames, M.D., Torsha, F.K. & Sarwar, F. A systematic literature review on recent trends of machine learning applications in additive manufacturing. J Intell Manuf 34, 2529–2555 (2023). https://doi.org/10.1007/s10845-022-01957-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-022-01957-6