Skip to main content
Log in

Augmented arithmetic optimization algorithm using opposite-based learning and lévy flight distribution for global optimization and data clustering

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper proposes a new data clustering method using the advantages of metaheuristic (MH) optimization algorithms. A novel MH optimization algorithm, called arithmetic optimization algorithm (AOA), was proposed to address complex optimization tasks. Math operations inspire the AOA, and it showed significant performance in dealing with different optimization problems. However, the traditional AOA faces some limitations in its search process. Thus, we develop a new variant of the AOA, namely, Augmented AOA (AAOA), integrated with the opposition-based learning (OLB) and Lévy flight (LF) distribution. The main idea of applying OLB and LF is to improve the traditional AOA exploration and exploitation trends in order to find the best clusters. To evaluate the AAOA, we implemented extensive experiments using twenty-three well-known benchmark functions and eight data clustering datasets. We also evaluated the proposed AAOA with extensive comparisons to different optimization algorithms. The outcomes verified the superiority of the AAOA over the traditional AOA and several MH optimization algorithms. Overall, the applications of the LF and OLB have a significant impact on the performance of the conventional AOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Makhadmeh, S. N., & Alyasseri, Z. A. A. (2020). Link-based multi-verse optimizer for text documents clustering. Applied Soft Computing, 87, 106002.

    Article  Google Scholar 

  • Abd Elaziz, M., Nabil, N., Ewees, A. A., & Lu, S. (2019). Automatic data clustering based on hybrid atom search optimization and sine-cosine algorithm. In 2019 IEEE congress on evolutionary computation (CEC) (pp. 2315–2322). IEEE.

  • Abualigah, L.M.Q. (2019). Feature selection and enhanced Krill Herd Algorithm for text document clustering. Springer.

  • Abualigah, L. (2020). Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Computing and Applications, 1–24.

  • Abualigah, L., & Diabat, A. (2020) A comprehensive survey of the grasshopper optimization algorithm: Results, variants, and applications. Neural Computing and Applications, 1–24.

  • Abualigah, L., & Diabat, A. (2020). A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Computing, 1–19.

  • Abualigah, L., & Diabat, A. (2021). Chaotic binary group search optimizer for feature selection. Expert Systems with Applications, 116368.

  • Abualigah, L., Diabat, A., & Geem, Z. W. (2020). A comprehensive survey of the harmony search algorithm in clustering applications. Applied Sciences, 10(11), 3827.

    Article  Google Scholar 

  • Abualigah, L., Diabat, A., Mirjalili, S., Elaziz, M. A., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.

    Article  Google Scholar 

  • Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158.

    Article  Google Scholar 

  • Abualigah, L., Gandomi, A. H., Elaziz, M. A., Hamad, H. A., Omari, M., Alshinwan, M., & Khasawneh, A. M. (2021). Advances in meta-heuristic optimization algorithms in big data text clustering. Electronics, 10(2), 101.

    Article  Google Scholar 

  • Abualigah, L., Gandomi, A. H., Elaziz, M. A., Hussien, A. G., Khasawneh, A. M., Alshinwan, M., & Houssein, E. H. (2020). Nature-inspired optimization algorithms for text document clustering—A comprehensive analysis. Algorithms, 13(12), 345.

    Article  Google Scholar 

  • Abualigah, L. M., Khader, A. T., & Hanandeh, E. S. (2018). A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Engineering Applications of Artificial Intelligence, 73, 111–125.

    Article  Google Scholar 

  • Abualigah, L. M., Khader, A. T., & Hanandeh, E. S. (2018). A new feature selection method to improve the document clustering using particle swarm optimization algorithm. Journal of Computational Science, 25, 456–466.

    Article  Google Scholar 

  • Abualigah, L. M., Khader, A. T., Hanandeh, E. S., & Gandomi, A. H. (2017). A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Applied Soft Computing, 60, 423–435.

    Article  Google Scholar 

  • Abualigah, L., Yousri, D., Elaziz, M.A., Ewees, A.A., Al-qaness, M.A., & Gandomi, A.H. (2021). Aquila optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 107250.

  • Alswaitti, M., Albughdadi, M., & Isa, N. A. M. (2018). Density-based particle swarm optimization algorithm for data clustering. Expert Systems with Applications, 91, 170–186.

    Article  Google Scholar 

  • Boushaki, S. I., Kamel, N., & Bendjeghaba, O. (2018). A new quantum chaotic cuckoo search algorithm for data clustering. Expert Systems with Applications, 96, 358–372.

    Article  Google Scholar 

  • Carrasco, J., García, S., Rueda, M., Das, S., & Herrera, F. (2020). Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review. Swarm and Evolutionary Computation, 54, 100665.

    Article  Google Scholar 

  • Chegini, S. N., Bagheri, A., & Najafi, F. (2018). Psoscalf: A new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Applied Soft Computing, 73, 697–726.

    Article  Google Scholar 

  • Chen, X., Qi, J., Zhu, X., Wang, X., & Wang, Z. (2020). Unlabelled text mining methods based on two extension models of concept lattices. International Journal of Machine Learning and Cybernetics, 11(2), 475–490.

    Article  Google Scholar 

  • Dhanachandra, N., Manglem, K., & Chanu, Y. J. (2015). Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Procedia Computer Science, 54, 764–771.

    Article  Google Scholar 

  • Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In IEEE proceedings of the sixth international symposium on micro machine and human science, 1995. MHS’95 (pp. 39–43).

  • Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942–1948). Citeseer

  • Elaziz, M.A., Abualigah, L., Ibrahim, R.A., & Attiya, I. (2021). IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing. Computational Intelligence and Neuroscience

  • Elaziz, M. A., Ewees, A. A., Ibrahim, R. A., & Lu, S. (2020). Opposition-based moth-flame optimization improved by differential evolution for feature selection. Mathematics and Computers in Simulation, 168, 48–75.

    Article  Google Scholar 

  • Elaziz, M. A., & Mirjalili, S. (2019). A hyper-heuristic for improving the initial population of whale optimization algorithm. Knowledge-Based Systems, 172, 42–63.

    Article  Google Scholar 

  • Elaziz, M. A., & Oliva, D. (2018). Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Conversion and Management, 171, 1843–1859.

    Article  Google Scholar 

  • Elaziz, M. A., Oliva, D., & Xiong, S. (2017). An improved opposition-based sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500.

    Article  Google Scholar 

  • Ewees, A.A., El Aziz, M.A., & Hassanien, A.E. (2017). Chaotic multi-verse optimizer-based feature selection. Neural Computing and Applications, 1–16.

  • Ewees, A.A., Elaziz, M.A., & Houssein, E.H. (2018). Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications.

  • Ezugwu, A.E., Agushaka, J.O., Abualigah, L., Mirjalili, S., & Gandomi, A.H. (2022). Prairie dog optimization algorithm. Neural Computing and Applications, 1–49.

  • Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A.H. (2020). Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 113377.

  • Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.

    Article  Google Scholar 

  • Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.

    Article  Google Scholar 

  • Houssein, E. H., Saad, M. R., Hashim, F. A., Shaban, H., & Hassaballah, M. (2020). Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 94, 103731.

    Article  Google Scholar 

  • Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666.

    Article  Google Scholar 

  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.

    Article  Google Scholar 

  • Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.

    Article  Google Scholar 

  • Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133.

    Article  Google Scholar 

  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.

    Article  Google Scholar 

  • Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  • Mukhopadhyay, A., Maulik, U., & Bandyopadhyay, S. (2015). A survey of multiobjective evolutionary clustering. ACM Computing Surveys (CSUR), 47(4), 1–46.

    Article  Google Scholar 

  • Namratha, M., & Prajwala, T. (2012). A comprehensive overview of clustering algorithms in pattern recognition. IOR Journal of Computer Engineering, 4(6), 23–30.

    Article  Google Scholar 

  • Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., & Pasi, G. (2018). Fuzzy self-tuning PSO: A settings-free algorithm for global optimization. Swarm and Evolutionary Computation, 39, 70–85.

    Article  Google Scholar 

  • Oliva, D., & Elaziz, M. A. (2020). An improved brainstorm optimization using chaotic opposite-based learning with disruption operator for global optimization and feature selection. Soft Computing, 24(18), 14051–14072.

    Article  Google Scholar 

  • Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.

    Article  Google Scholar 

  • Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., et al. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664–681.

    Article  Google Scholar 

  • Schickel-Zuber, V., & Faltings, B. (2007). Using hierarchical clustering for learning theontologies used in recommendation systems. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 599–608).

  • Sun, L., Tao, T., Zheng, X., Bao, S., & Luo, Y. (2019). Combining density peaks clustering and gravitational search method to enhance data clustering. Engineering Applications of Artificial Intelligence, 85, 865–873.

    Article  Google Scholar 

  • Suresh, K., Kundu, D., Ghosh, S., Das, S., Abraham, A., & Han, S. Y. (2009). Multi-objective differential evolution for automatic clustering with application to micro-array data analysis. Sensors, 9(5), 3981–4004.

    Article  Google Scholar 

  • Talaei, K., Rahati, A., & Idoumghar, L. (2020). A novel harmony search algorithm and its application to data clustering. Applied Soft Computing, 106273.

  • Tizhoosh, H.R. (2005). Opposition-based learning: A new scheme for machine intelligence. In IEEE International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06) (Vol. 1, pp. 695–701)

  • Tripathi, A. K., Sharma, K., & Bala, M. (2018). A novel clustering method using enhanced grey wolf optimizer and MapReduce. Big Data Research, 14, 93–100.

    Article  Google Scholar 

  • Wang, G.-G., Deb, S., Gandomi, A. H., Zhang, Z., & Alavi, A. H. (2016). Chaotic cuckoo search. Soft Computing, 20(9), 3349–3362.

    Article  Google Scholar 

  • Wang, G.-G., Gandomi, A. H., & Alavi, A. H. (2014). Stud Krill Herd algorithm. Neurocomputing, 128, 363–370.

    Article  Google Scholar 

  • Wang, G.-G., Gandomi, A. H., Alavi, A. H., & Hao, G.-S. (2014). Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Computing and Applications, 25(2), 297–308.

    Article  Google Scholar 

  • Wang, G.-G., Lu, M., & Zhao, X.-J. (2016). An improved bat algorithm with variable neighborhood search for global optimization. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 1773–1778). IEEE

  • Wang, N., Wang, J., Zhu, L., Wang, H., & Wang, G. Novel dynamic clustering method by integrating marine predators algorithm and particle swarm optimization algorithm. IEEE Access.

  • Wikaisuksakul, S. (2014). A multi-objective genetic algorithm with fuzzy c-means for automatic data clustering. Applied Soft Computing, 24, 679–691.

    Article  Google Scholar 

  • Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural networks, 16(3), 645–678.

    Article  Google Scholar 

  • Yan, B., Zhao, Z., Zhou, Y., Yuan, W., Li, J., Wu, J., & Cheng, D. (2017). A particle swarm optimization algorithm with random learning mechanism and levy flight for optimization of atomic clusters. Computer Physics Communications, 219, 79–86.

    Article  Google Scholar 

  • Zabihi, F., & Nasiri, B. (2018). A novel history-driven artificial bee colony algorithm for data clustering. Applied Soft Computing, 71, 226–241.

    Article  Google Scholar 

  • Zhang, H., Yuan, M., Liang, Y., & Liao, Q. (2018). A novel particle swarm optimization based on prey-predator relationship. Applied Soft Computing, 68, 202–218.

    Article  Google Scholar 

  • Zhang, J., & Wang, J. (2020). Improved Salp Swarm algorithm based on levy flight and sine cosine operator. IEEE Access, 8, 99740–99771.

    Article  Google Scholar 

  • Zhao, W., Wang, L., & Zhang, Z. (2019). A novel atom search optimization for dispersion coefficient estimation in groundwater. Future Generation Computer Systems, 91, 601–610.

    Article  Google Scholar 

  • Zheng, R., Jia, H., Abualigah, L., Liu, Q., & Wang, S. (2022). An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems. Mathematical Biosciences and Engineering, 19(1), 473–512.

    Article  Google Scholar 

  • Zhou, B., & Liao, X. (2020). Particle filter and levy flight-based decomposed multi-objective evolution hybridized particle swarm for flexible job shop greening scheduling with crane transportation. Applied Soft Computing, 91, 106217.

    Article  Google Scholar 

  • Zhou, Y., Wu, H., Luo, Q., & Abdel-Baset, M. (2019). Automatic data clustering using nature-inspired symbiotic organism search algorithm. Knowledge-Based Systems, 163, 546–557.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 62150410434) and in part by LIESMARS Special Research Funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laith Abualigah.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abualigah, L., Elaziz, M.A., Yousri, D. et al. Augmented arithmetic optimization algorithm using opposite-based learning and lévy flight distribution for global optimization and data clustering. J Intell Manuf 34, 3523–3561 (2023). https://doi.org/10.1007/s10845-022-02016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-02016-w

Keywords

Navigation