Skip to main content

Advertisement

Log in

A digital shadow framework using distributed system concepts

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Digital twin (DT) is a research topic that gained momentum in the Industry 4.0 era. The goal of DT is to create a virtual real-time intelligent system that is a typical twin of the physical system. DT provides analysis, prognosis, planning, and rapid response when needed. Digital shadow (DS) is an artifact concept of DT that provides a real-time replica of the physical system. Information in a DS is passed in one direction only, from the physical system to the virtual one. While in DT, the information goes in both directions. The definition and roles of DS and DT are overlapping. However, DS can be defined as the main component of a DT system. In this paper, DS roles are specified. Based on these roles, A DS framework architecture is proposed, and the communication system between its components. The proposed framework design is built using distributed system concepts such as event-driven architecture, microservices, and containerization. These concepts are well defined and utilized in the software engineering domain. The originality of the proposed framework is the definition of a systematic approach for designing and integrating digital models (DMs) from different vendors and domains. An experiment is designed to prove the framework’s ability to shadow a physical system in real-time. Multiple DMs are implemented and deployed on the proposed DS framework. These DMs are used to shadow a natural gas compressor system. Experimental results prove the practicality of our proposed DS framework to operate in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • AboElHassan, A., Sakr, A., & Yacout, S. (2021). A framework for digital twin deployment in production systems. In P. Weißgraeber, F. Heieck, & C. Ackermann (Eds.), Advances in automotive production technology-theory and application (pp. 145–152). Springer.

  • Alaasam, A.B.A., Radchenko, G., & Tchernykh, A. (2019). Stateful stream processing for digital twins: Microservice-based kafka stream DSL. In 2019 international multi-conference on engineering, computer and information sciences (SIBIRCON) (pp. 0804–0809). https://doi.org/10.1109/SIBIRCON48586.2019.8958367

  • Alexopoulos, K., Nikolakis, N., & Chryssolouris, G. (2020). Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. International Journal of Computer Integrated Manufacturing, 33(5), 429–439. https://doi.org/10.1080/0951192X.2020.1747642

    Article  Google Scholar 

  • Becker, F., Bibow, P., Dalibor, M., Gannouni, A., Hahn, V., Hopmann, C., Jarke, M., Koren, I., Kröger, M., Lipp, J., Maibaum, J., Michael, J., Rumpe, B., Sapel, P., Schäfer, N., Schmitz, G., Schuh, G., & Wortmann, A. (2021). A conceptual model for digital shadows in industry and its application. Lecture notes in computer science (LNCS). In A. Ghose, J. Horkoff, V. E. Silva Souza, et al. (Eds.), Conceptual modeling (Vol. 13011, pp. 271–281). Springer.

  • Borghesi, A., Di Modica, G., Bellavista, P., Gowtham, V., Willner, A., Nehls, D., Kintzler, F., Cejka, S., Tisbeni, S. R., Costantini, A., Galletti, M., Antonacci, M., & Ahouangonou, J. C. (2021). Iotwins: Design and implementation of a platform for the management of digital twins in industrial scenarios. In 2021 IEEE/ACM 21st international symposium on cluster, cloud and internet computing (CCGrid) (pp 625–633). https://doi.org/10.1109/CCGrid51090.2021.00075

  • Brauner, P., Dalibor, M., Jarke, M., Kunze, I., Koren, I., Lakemeyer, G., et al. (2022). A computer science perspective on digital transformation in production. ACM Transactions on Internet of Things, 3(2), 1–32. https://doi.org/10.1145/3502265.

    Article  Google Scholar 

  • Brecher, C., Buchsbaum, M., Müller, A., Schilling, K., Obdenbusch, M., Staudacher, S., & Albasatineh, M. C. (2021). Gaining IIOT insights by leveraging ontology-based modelling of raw data and digital shadows. In 2021 4th IEEE international conference on industrial cyber-physical systems (ICPS) (pp 231–236). https://doi.org/10.1109/ICPS49255.2021.9468116

  • Catarci, T., Firmani, D., Leotta, F., Mandreoli, F., Mecella, M., & Sapio, F. (2019). A conceptual architecture and model for smart manufacturing relying on service-based digital twins. In 2019 IEEE international conference on web services (ICWS). IEEE. https://doi.org/10.1109/icws.2019.00047

  • Cimino, C., Negri, E., & Fumagalli, L. (2019). Review of digital twin applications in manufacturing. Computers in Industry, 113(103), 130. https://doi.org/10.1016/j.compind.2019.103130

    Article  Google Scholar 

  • Cognite. (2018). Open industrial data: Inspiring innovation & fueling collaboration in the oil & gas ecosystem. Tech. rep., Cognite. https://content.cognite.com/open-industrial-data

  • de Castro-Cros, M., Velasco, M., & Angulo, C. (2021). Machine-learning-based condition assessment of gas turbines—A review. Energies, 14, 8468. https://doi.org/10.3390/en14248468

    Article  Google Scholar 

  • Dobaj, J., Krisper, M., Macher, G. (2019). Towards cyber-physical infrastructure as-a-service (CPIaaS) in the era of industry 4.0. In Communications in computer and information science (pp. 310–321). Springer. https://doi.org/10.1007/978-3-030-28005-5_24

  • Duan, J. G., Ma, T. Y., Zhang, Q. L., Liu, Z., & Qin, J. Y. (2021). Design and application of digital twin system for the blade-rotor test rig. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01824-w.

    Article  Google Scholar 

  • Göppert, A., Grahn, L., Rachner, J., Grunert, D., Hort, S., & Schmitt, R. H. (2021). Pipeline for ontology-based modeling and automated deployment of digital twins for planning and control of manufacturing systems. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01860-6.

    Article  Google Scholar 

  • Groshev, M., Guimarães, C., Martén-Pérez, J., & de la Oliva, A. (2021). Toward intelligent cyber-physical systems: Digital twin meets artificial intelligence. IEEE Communications Magazine, 59(8), 14–20. https://doi.org/10.1109/MCOM.001.2001237.

    Article  Google Scholar 

  • Hu, F., Qiu, X., Jing, G., Tang, J., & Zhu, Y. (2022). Digital twin-based decision making paradigm of raise boring method. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-022-01941-0.

    Article  Google Scholar 

  • Huang, Z., Shen, Y., Li, J., Fey, M., & Brecher, C. (2021). A survey on AI-driven digital twins in industry 4.0: Smart manufacturing and advanced robotics. Sensors. https://doi.org/10.3390/s21196340

  • Jiang, Z., Guo, Y., & Wang, Z. (2021). Digital twin to improve the virtual-real integration of industrial IoT. Journal of Industrial Information Integration, 22(100), 196. https://doi.org/10.1016/j.jii.2020.100196

    Article  Google Scholar 

  • Kamath, V., Morgan, J., & Ali, M.I. (2020). Industrial IoT and digital twins for a smart factory : An open source toolkit for application design and benchmarking. In 2020 global internet of things summit (GIoTS) (pp. 1–6). https://doi.org/10.1109/GIOTS49054.2020.9119497

  • Kareem, L. A., Iwalewa, T. M., & Al-Marhoun, M. (2016). New explicit correlation for the compressibility factor of natural gas: Linearized z-factor isotherms. Journal of Petroleum Exploration and Production Technology, 6(3), 481–492. https://doi.org/10.1007/s13202-015-0209-3

    Article  Google Scholar 

  • Kassen, S., Tammen, H., Zarte, M., & Pechmann, A. (2021). Concept and case study for a generic simulation as a digital shadow to be used for production optimisation. Processes. https://doi.org/10.3390/pr9081362.

    Article  Google Scholar 

  • Konstantinov, S., Assad, F., Azam, W., Vera, D., Ahmad, B., & Harrison, R. (2021). Developing web-based digital twin of assembly lines for industrial cyber-physical systems. In 2021 4th IEEE international conference on industrial cyber-physical systems (ICPS) (pp. 219–224). https://doi.org/10.1109/ICPS49255.2021.9468227

  • Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB (pp. 1–7)

  • Kuehner, K. J., Scheer, R., & Strassburger, S. (2021). Digital twin: Finding common ground—A meta-review. Procedia CIRP, 104, 1227–1232. https://doi.org/10.1016/j.procir.2021.11.206

    Article  Google Scholar 

  • Kunath, M., & Winkler, H. (2018). Integrating the digital twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP, 72, 225–231. https://doi.org/10.1016/j.procir.2018.03.192

    Article  Google Scholar 

  • Ladj, A., Wang, Z., Meski, O., Belkadi, F., Ritou, M., & Da Cunha, C. (2021). A knowledge-based digital shadow for machining industry in a digital twin perspective. Journal of Manufacturing Systems, 58, 168–179. https://doi.org/10.1016/j.jmsy.2020.07.018.

    Article  Google Scholar 

  • Leng, B., Sun, H., Si, G., Xia, T., & Wang, H. (2021). Digital twin and manufacturing simulation integrated platform embedded in cyber-physical system. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1983/1/012117

  • Liu, S., Wang, X. V., & Wang, L. (2022). Digital twin-enabled advance execution for human-robot collaborative assembly. CIRP Annals, 71(1), 25–28. https://doi.org/10.1016/j.cirp.2022.03.024

    Article  Google Scholar 

  • López, C. E. B. (2021). Real-time event-based platform for the development of digital twin applications. The International Journal of Advanced Manufacturing Technology, 116(3), 835–845. https://doi.org/10.1007/s00170-021-07490-9

    Article  Google Scholar 

  • Lu, Y., Liu, C., Wang, K. I. K., Huang, H., & Xu, X. (2020). Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61(101), 837. https://doi.org/10.1016/j.rcim.2019.101837.

    Article  Google Scholar 

  • Lüdtke, K. H. (2004). Process centrifugal compressors (1st ed.). Springer.

  • Martinez, S., Mariño, A., Sanchez, S., Montes, A. M., Triana, J. M., Barbieri, G., et al. (2021). A digital twin demonstrator to enable flexible manufacturing with robotics: A process supervision case study. Production & Manufacturing Research, 9(1), 140–156. https://doi.org/10.1080/21693277.2021.1964405.

    Article  Google Scholar 

  • Mykoniatis, K., & Harris, G. A. (2021). A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach. Journal of Intelligent Manufacturing, 32(7), 1899–1911. https://doi.org/10.1007/s10845-020-01724-5

    Article  Google Scholar 

  • Paredis, R., & Vangheluwe, H. (2021). Exploring a digital shadow design workflow by means of a line following robot use-case. In 2021 Annual modeling and simulation conference (ANNSIM) (pp. 1–12). https://doi.org/10.23919/ANNSIM52504.2021.9552143

  • Park, H., Easwaran, A., & Andalam, S. (2019). TiLA: Twin-in-the-loop architecture for cyber-physical production systems. In 2019 IEEE 37th international conference on computer design (ICCD). IEEE. https://doi.org/10.1109/iccd46524.2019.00019

  • Park, K. T., Lee, S. H., & Noh, S. D. (2021). Information fusion and systematic logic library-generation methods for self-configuration of autonomous digital twin. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01795-y

    Article  Google Scholar 

  • Pires, F., Melo, V., Almeida, J., & Leitão, P. (2020). Digital twin experiments focusing virtualisation, connectivity and real-time monitoring. In 2020 IEEE conference on industrial cyberphysical systems (ICPS) (pp. 309–314). https://doi.org/10.1109/ICPS48405.2020.9274739

  • Qamsane, Y., Chen, C. Y., Balta, E. C., Kao, B. C., Mohan, S., Moyne, J., Tilbury, D., & Barton, K. (2019). A unified digital twin framework for real-time monitoring and evaluation of smart manufacturing systems. In 2019 IEEE 15th international conference on automation science and engineering (CASE). IEEE. https://doi.org/10.1109/coase.2019.8843269

  • Qi, Q., Tao, F., Hu, T., Answer, N., Liu, A., Wei, Y., Wang, L., & Nee, A. Y. C. (2021). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 58, 3–21. https://doi.org/10.1016/j.jmsy.2019.10.001.

  • Radchenko, G., Alaasam, A.B., & Tchernykh, A. (2018). Micro-workflows: Kafka and kepler fusion to support digital twins of industrial processes. In 2018 IEEE/ACM international conference on utility and cloud computing companion (UCC Companion) (pp. 83–88). https://doi.org/10.1109/UCC-Companion.2018.00039

  • Redeker, M., Weskamp, J. N., Rössl, B., & Pethig, F. (2021). Towards a digital twin platform for industrie 4.0. In 2021 4th IEEE international conference on industrial cyber-physical systems (ICPS) (pp. 39–46). https://doi.org/10.1109/ICPS49255.2021.9468204

  • Redelinghuys, A. J. H., Basson, A. H., & Kruger, K. (2020). A six-layer architecture for the digital twin: A manufacturing case study implementation. Journal of Intelligent Manufacturing, 31(6), 1383–1402. https://doi.org/10.1007/s10845-019-01516-6

    Article  Google Scholar 

  • Riesener, M., Schuh, G., Dölle, C., & Tönnes, C. (2019). The digital shadow as enabler for data analytics in product life cycle management. Procedia CIRP, 80, 729–734. https://doi.org/10.1016/j.procir.2019.01.083.

    Article  Google Scholar 

  • Sax, M. J. (2018). Apache Kafka (pp. 1–8). Springer.

  • Schuh, G., Kelzenberg, C., Wiese, J., & Ochel, T. (2019). Data structure of the digital shadow for systematic knowledge management systems in single and small batch production. Procedia CIRP, 84, 1094–1100. https://doi.org/10.1016/j.procir.2019.04.210.

    Article  Google Scholar 

  • Sepasgozar, S. M. E. (2021). Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable built environment. Buildings. https://doi.org/10.3390/buildings11040151

    Article  Google Scholar 

  • Shafto, M., Conroy, M., Doyle, R., et al. (2010). Draft modeling, simulation, information technology & processing roadmap. Technology Area 11

  • Stan, L., Nicolescu, A. F., Pupăză, C., & Jiga, G. (2022). Digital twin and web services for robotic deburring in intelligent manufacturing. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-022-01928-x.

    Article  Google Scholar 

  • Stark, R., Damerau, T. (2019). Digital twin (pp 1–8). Springer. https://doi.org/10.1007/978-3-642-35950-7_16870-1

  • Steindl, G., & Kastner, W. (2021). Semantic microservice framework for digital twins. Applied Sciences. https://doi.org/10.3390/app11125633

    Article  Google Scholar 

  • Talkhestani, B. A., & Weyrich, M. (2020). Digital twin of manufacturing systems: A case study on increasing the efficiency of reconfiguration. Automatisierungstechnik, 68(6), 435–444. https://doi.org/10.1515/auto-2020-0003

    Article  Google Scholar 

  • Tancredi, G. P., Vignali, G., & Bottani, E. (2022). Integration of digital twin, machine-learning and industry 4.0 tools for anomaly detection: An application to a food plant. Sensors. https://doi.org/10.3390/s22114143

    Article  Google Scholar 

  • Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering, 5(4), 653–661. https://doi.org/10.1016/j.eng.2019.01.014

  • Tao, F., & Zhang, M. (2017). Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing. IEEE Access, 5, 20418–20427. https://doi.org/10.1109/access.2017.2756069

    Article  Google Scholar 

  • Tliba, K., Diallo, T. M. L., Penas, O., Ben Khalifa, R., Ben Yahia, N., & Choley, J. Y. (2022). Digital twin-driven dynamic scheduling of a hybrid flow shop. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-022-01922-3.

    Article  Google Scholar 

  • Tong, X., Liu, Q., Pi, S., & Xiao, Y. (2020). Real-time machining data application and service based on IMT digital twin. Journal of Intelligent Manufacturing, 31(5), 1113–1132. https://doi.org/10.1007/s10845-019-01500-0.

    Article  Google Scholar 

  • Trauer, J., Schweigert-Recksiek, S., Engel, C., Spreitzer, K., & Zimmermann, M. (2020). What is a digital twin?–Definitions and insights from an industrial case study in technical product development. Proceedings of the Design Society: DESIGN Conference, 1, 757–766. https://doi.org/10.1017/dsd.2020.15.

    Article  Google Scholar 

  • Uhlenkamp, J. F., Hribernik, K., Wellsandt, S., & Thoben, K. D. (2019). Digital twin applications : A first systemization of their dimensions. In. (2019). IEEE international conference on engineering, technology and innovation (ICE/ITMC). IEEE. https://doi.org/10.1109/ice.2019.8792579.

    Article  Google Scholar 

  • Vayghan, L. A., Saied, M. A., Toeroe, M., & Khendek, F. (2021). A Kubernetes controller for managing the availability of elastic microservice based stateful applications. Journal of Systems and Software, 175(110), 924. https://doi.org/10.1016/j.jss.2021.110924.

    Article  Google Scholar 

  • Weber, C., Königsberger, J., Kassner, L., & Mitschang, B. (2017). M2ddm—A maturity model for data-driven manufacturing. Procedia CIRP, 63, 173–178. https://doi.org/10.1016/j.procir.2017.03.309

  • Williams, R., Erkoyuncu, J. A., Masood, T., & Vrabic, R. (2020). Augmented reality assisted calibration of digital twins of mobile robots. IFAC-PapersOnLine, 53(3), 203–208. https://doi.org/10.1016/j.ifacol.2020.11.033

  • Yun, S., Park, J.H., & Kim, W.T. (2017). Data-centric middleware based digital twin platform for dependable cyber-physical systems. In 2017 ninth international conference on ubiquitous and future networks (ICUFN). IEEE. https://doi.org/10.1109/icufn.2017.7993933

  • Zhang, H., Qi, Q., & Tao, F. (2022). A multi-scale modeling method for digital twin shop-floor. Journal of Manufacturing Systems, 62, 417–428. https://doi.org/10.1016/j.jmsy.2021.12.011

    Article  Google Scholar 

  • Zhong, Z., & Buyya, R. (2020). A cost-efficient container orchestration strategy in Kubernetes-based cloud computing infrastructures with heterogeneous resources. ACM Transactions on Internet Technology. https://doi.org/10.1145/3378447

    Article  Google Scholar 

  • Zhu, Z., Xi, X., Xu, X., & Cai, Y. (2021). Digital twin-driven machining process for thin-walled part manufacturing. Journal of Manufacturing Systems, 59, 453–466. https://doi.org/10.1016/j.jmsy.2021.03.015

  • Zhuang, C., Gong, J., & Liu, J. (2021). Digital twin-based assembly data management and process traceability for complex products. Journal of Manufacturing Systems, 58, 118–131. https://doi.org/10.1016/j.jmsy.2020.05.011

    Article  Google Scholar 

  • Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 96(1–4), 1149–1163. https://doi.org/10.1007/s00170-018-1617-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman AboElHassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AboElHassan, A., Yacout, S. A digital shadow framework using distributed system concepts. J Intell Manuf 34, 3579–3598 (2023). https://doi.org/10.1007/s10845-022-02028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-02028-6

Keywords

Navigation