Skip to main content
Log in

Cross-scale fusion and domain adversarial network for generalizable rail surface defect segmentation on unseen datasets

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Surface quality control is a crucial part of rail manufacturing. Deep neural networks have shown impressive accuracy in rail surface defect segmentation under the assumption that the test images have the same distribution as the training images. However, in practice detection, the rail images exhibit variations in appearance and scale for different rail types and production conditions. Directly deploying the deep neural network on unseen images shows a performance degradation due to the distribution discrepancies of training images. To this end, we propose a cross-scale fusion and domain adversarial network (CFDANet) to improve the generalization ability of deep neural networks on unseen datasets. To alleviate the domain shift caused by defect scale differences, we design a dual-encoder to extract multi-scale features from images of different resolutions. Then, those features are adaptively fused through a cross-scale fusion module. For the domain shift caused by inconsistent rail appearance, we introduce transferable-aware domain adversarial learning to extract domain invariant features from different datasets. Moreover, we further propose a transferable curriculum to suppress the negative impact of images with low transferability. Experimental results show that our CFDANet can accurately segment defects in unseen datasets and surpass other state-of-the-art domain generalization methods in all five target domain settings. The source code is released at https://github.com/dotaball/railseg_dg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used in this study is described in the text. We have provided the source code at https://github.com/dotaball/railseg_dg.

References

  • Badmos, O., Kopp, A., Bernthaler, T., & Schneider, G. (2020). Image-based defect detection in lithium-ion battery electrode using convolutional neural networks. Journal of Intelligent Manufacturing, 31(4), 885–897. https://doi.org/10.1007/s10845-019-01484-x

    Article  Google Scholar 

  • Ben Gharsallah, M., & Ben Braiek, E. (2021). Computer aided manufacturing method for surface silicon steel inspection based on an efficient anisotropic diffusion algorithm. Journal of Intelligent Manufacturing, 32(4), 1025–1041. https://doi.org/10.1007/s10845-020-01601-1

    Article  Google Scholar 

  • Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations for domain adaptation. Advances in Neural Information Processing Systems, 19, 137–144.

    Google Scholar 

  • Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. Proceedings of the 26th Annual International Conference on Machine Learning. https://doi.org/10.1145/1553374.1553380

    Article  Google Scholar 

  • Chen, C., Bai, W., Davies, R. H., Bhuva, A. N., Manisty, C. H., Augusto, J. B., Moon, J. C., Aung, N., Lee, A. M., Sanghvi, M. M., Fung, K., Miguel Paiva, J., Petersen, S. E., Lukaschuk, E., Piechnik, S. K., Neubauer, S., & Rueckert, D. (2020). Improving the generalizability of convolutional neural network-based segmentation on CMR images. Frontiers in Cardiovascular Medicine, 7, 105. https://doi.org/10.3389/fcvm.2020.00105

    Article  Google Scholar 

  • Gan, J., Li, Q., Wang, J., & Yu, H. (2017). A hierarchical extractor-based visual rail surface inspection system. IEEE Sensors Journal, 17(23), 7935–7944. https://doi.org/10.1109/JSEN.2017.2761858

    Article  Google Scholar 

  • Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. International Conference on Machine Learning (pp. 1180–1189). PMLR.

    Google Scholar 

  • Gao, S., Zhou, H., Gao, Y., & Zhuang, X. (2022). Joint modeling of image and label statistics for enhancing model generalizability of medical image segmentation. arXiv preprint arXiv:2206.04336.

  • Hao, R., Lu, B., Cheng, Y., Li, X., & Huang, B. (2021). A steel surface defect inspection approach towards smart industrial monitoring. Journal of Intelligent Manufacturing, 32(7), 1833–1843. https://doi.org/10.1007/s10845-020-01670-2

    Article  Google Scholar 

  • Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. In International Conference on Learning Representations.

  • Jain, S., Seth, G., Paruthi, A., Soni, U., & Kumar, G. (2020). Synthetic data augmentation for surface defect detection and classification using deep learning. Journal of Intelligent Manufacturing, 33(4), 1007–1020. https://doi.org/10.1007/s10845-020-01710-x

    Article  Google Scholar 

  • Khandelwal, P., & Yushkevich, P. (2020). Domain generalizer: A few-shot meta learning framework for domain generalization in medical imaging. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (pp. 73–84). Springer. https://doi.org/10.1007/978-3-030-60548-3_8

    Chapter  Google Scholar 

  • Li, D., Yang, Y., Song, Y. Z., & Hospedales, T. (2018). Learning to generalize: Meta-learning for domain generalization. Proceedings of the AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v32i1.11596

    Article  Google Scholar 

  • Liu, Q., Dou, Q., & Heng, P. A. (2020). Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 475–485). Springer. https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  • Luo, Y., Zheng, L., Guan, T., Yu, J., & Yang, Y. (2019). Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2019.00261

    Article  Google Scholar 

  • Ni, X., Ma, Z., Liu, J., Shi, B., & Liu, H. (2021). Attention network for rail surface defect detection via consistency of intersection-over-union (IoU)-guided center-point estimation. IEEE Transactions on Industrial Informatics, 18(3), 1694–1705. https://doi.org/10.1109/TII.2021.3085848

    Article  Google Scholar 

  • Nieniewski, M. (2020). Morphological detection and extraction of rail surface defects. IEEE Transactions on Instrumentation and Measurement, 69(9), 6870–6879. https://doi.org/10.1109/TIM.2020.2975454

    Article  Google Scholar 

  • Niu, M., Song, K., Huang, L., Wang, Q., Yan, Y., & Meng, Q. (2020). Unsupervised saliency detection of rail surface defects using stereoscopic images. IEEE Transactions on Industrial Informatics, 17(3), 2271–2281. https://doi.org/10.1109/TII.2020.3004397

    Article  Google Scholar 

  • Niu, M., Wang, Y., Song, K., Wang, Q., Zhao, Y., & Yan, Y. (2021). An adaptive pyramid graph and variation residual-based anomaly detection network for rail surface defects. IEEE Transactions on Instrumentation and Measurement, 70, 1–13. https://doi.org/10.1109/TIM.2021.3125987

    Article  Google Scholar 

  • Pan, F., Shin, I., Rameau, F., Lee, S., & Kweon, I. S. (2020). Unsupervised intra-domain adaptation for semantic segmentation through self-supervision. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR42600.2020.00382

    Article  Google Scholar 

  • Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new domains. European conference on computer vision (pp. 213–226). Springer. https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  • Singh, S. A., & Desai, K. A. (2022). Automated surface defect detection framework using machine vision and convolutional neural networks. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01878-w

    Article  Google Scholar 

  • Song, G., Song, K., & Yan, Y. (2020). Saliency detection for strip steel surface defects using multiple constraints and improved texture features. Optics and Lasers in Engineering, 128, 106000. https://doi.org/10.1016/j.optlaseng.2019.106000

    Article  Google Scholar 

  • Song, K., Wang, J., Bao, Y., Huang, L., & Yan, Y. (2022). A novel visible-depth-thermal image dataset of salient object detection for robotic visual perception. IEEE/ASME Transactions on Mechatronics. https://doi.org/10.1109/TMECH.2022.3215909

    Article  Google Scholar 

  • Song, Y., Liu, Z., Wang, J., Tang, R., Duan, G., & Tan, J. (2021). Multiscale adversarial and weighted gradient domain adaptive network for data scarcity surface defect detection. IEEE Transactions on Instrumentation and Measurement, 70, 1–10. https://doi.org/10.1109/TIM.2021.3096284

    Article  Google Scholar 

  • Tao, A., Sapra, K., & Catanzaro, B. (2020). Hierarchical multi-scale attention for semantic segmentation. arXiv preprint arXiv:2005.10821.

  • Tsai, Y. H., Hung, W. C., Schulter, S., Sohn, K., Yang, M. H., & Chandraker, M. (2018). Learning to adapt structured output space for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2018.00780

    Article  Google Scholar 

  • Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579–2605.

    Google Scholar 

  • Vu, T. H., Jain, H., Bucher, M., Cord, M., & Pérez, P. (2019). Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2019.00262

    Article  Google Scholar 

  • Wang, J., Li, Q., Gan, J., Yu, H., & Yang, X. (2019). Surface defect detection via entity sparsity pursuit with intrinsic priors. IEEE Transactions on Industrial Informatics, 16(1), 141–150. https://doi.org/10.1109/TII.2019.2917522

    Article  Google Scholar 

  • Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). CBAM Convolutional block attention module. European on Computer Vision (pp. 3–19). Springer. https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  • Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., & Luo, P. (2021). SegFormer: Simple and efficient design for semantic segmentation with transformers. Advances in Neural Information Processing Systems, 34, 12077–12090.

    Google Scholar 

  • Yu, H., Li, Q., Tan, Y., Gan, J., Wang, J., Geng, Y. A., & Jia, L. (2018). A coarse-to-fine model for rail surface defect detection. IEEE Transactions on Instrumentation and Measurement, 68(3), 656–666. https://doi.org/10.1109/TIM.2018.2853958

    Article  Google Scholar 

  • Zhang, L., Wang, X., Yang, D., Sanford, T., Harmon, S., Turkbey, B., Roth, H., Myronenko, A., Xu, D., Xu Z., (2019). When unseen domain generalization is unnecessary? Rethinking data augmentation. arXiv preprint arXiv:1906.03347.

  • Zhang, D., Song, K., Wang, Q., He, Y., Wen, X., & Yan, Y. (2020). Two deep learning networks for rail surface defect inspection of limited samples with line-level label. IEEE Transactions on Industrial Informatics, 17(10), 6731–6741. https://doi.org/10.1109/TII.2020.3045196

    Article  Google Scholar 

  • Zhang, H., Song, Y., Chen, Y., Zhong, H., Liu, L., Wang, Y., Akilan, T., & Jonathan Wu, Q. M. (2021a). MRSDI-CNN: Multi-model rail surface defect inspection system based on convolutional neural networks. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2021.3101053

    Article  Google Scholar 

  • Zhang, S., Zhang, Q., Gu, J., Su, L., Li, K., & Pecht, M. (2021b). Visual inspection of steel surface defects based on domain adaptation and adaptive convolutional neural network. Mechanical Systems and Signal Processing, 153, 107541. https://doi.org/10.1016/j.ymssp.2020.107541

    Article  Google Scholar 

  • Zhao, X., Sicilia, A., Minhas, D. S., O’Connor, E. E., Aizenstein, H. J., Klunk, W. E., Tudorascu, D. L., & Hwang, S. J. (2021). Robust white matter hyperintensity segmentation on unseen domain. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). https://doi.org/10.1109/ISBI48211.2021.9434034

    Article  Google Scholar 

  • Zhou, K., Yang, Y., Qiao, Y., & Xiang, T. (2021). Mixstyle neural networks for domain generalization and adaptation. arXiv preprint arXiv:2107.02053.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51805078), the Fundamental Research Funds for the Central Universities (Grant No. N2103011), the Central Guidance on Local Science and Technology Development Fund (Grant No. 2022JH6/100100023), and the 111 Project (Grant No. B16009).

Author information

Authors and Affiliations

Authors

Contributions

SM: Conceptualization, Methodology, Software, Writing—original draft. KS: Project administration, Resources. MN: Investigation, Data curation. HT: Visualization, Writing—review & editing. YY: Supervision, Funding acquisition.

Corresponding authors

Correspondence to Kechen Song or Yunhui Yan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Song, K., Niu, M. et al. Cross-scale fusion and domain adversarial network for generalizable rail surface defect segmentation on unseen datasets. J Intell Manuf 35, 367–386 (2024). https://doi.org/10.1007/s10845-022-02051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-02051-7

Keywords

Navigation