Skip to main content
Log in

Monitoring and control the Wire Arc Additive Manufacturing process using artificial intelligence techniques: a review

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Wire Arc Additive Manufacturing is a Direct Energy Deposition additive technology that uses the principle of wire welding to deposit layers of material to create a finished component. This technology is finding an increasing interest in the manufacturing industry, especially thanks the low cost and the possibility to build large-scale components. Nowadays, the boosting to transition into smart manufacturing systems and the increasingly computational resources allowed the development of intelligent applications for smart production systems for both in situ inspection and process parameter control. This paper aims to provide an review of applications developed using artificial intelligence techniques for Wire Arc Additive Manufacturing, with particular focus on defect detection software modules, feedback generation for control system and innovative control strategies as reinforcement learning to overcome problems related to model non-linearity and uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  • Adolfsson, S., Bahrami, A., Bolmsjö, G., & Claesson, I. (1999). On-line quality monitoring in short-circuit gas metal ARC welding. Welding Journal-New York, 78, 59s.

    Google Scholar 

  • Alfaro, S. C. A., Vargas, J. A. R., de Carvalho, G. C., & de Souza, G. G. (2015). Characterization of “humping’’ in the GTA welding process using infrared images. Journal of materials processing technology, 223, 216–224.

    Article  Google Scholar 

  • Almeida, P., & Williams, S. (2010). Innovative process model of ti-6al-4v additive layer manufacturing using cold metal transfer (cmt). University of Texas at Austin.

    Google Scholar 

  • Arata, Y., Inoue, K., Futamata, M., & Toh, T. (1979). Investigation on welding arc sound (report I): Effect of welding method and welding condition of welding arc sound (welding physics, processes & instruments). Transactions of JWRI, 8(1), 25–31.

    Google Scholar 

  • Aria, M., & Cuccurullo, C. (2017). bibliometrix: An r-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.

    Article  Google Scholar 

  • Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866.

  • Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503–515.

    Article  Google Scholar 

  • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

    Article  Google Scholar 

  • Bianco, S., Cadene, R., Celona, L., & Napoletano, P. (2018). Benchmark analysis of representative deep neural network architectures. IEEE Access, 6, 64270–64277.

    Article  Google Scholar 

  • Bingul, Z., & Cook, G. E. (1999). Dynamic modeling of gmaw process, (Vol. 4, pp. 3059–3064, IEEE) .

  • Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? The Journal of Arthroplasty, 33(8), 2358–2361.

    Article  Google Scholar 

  • Caio, L. B. A., et al. (2021). Mild steel gma welds microstructural analysis and estimation using sensor fusion and neural network modeling. Sensors, 21(16), 5459.

    Article  Google Scholar 

  • Chen, B., Wang, J., & Chen, S. (2010). A study on application of multi-sensor information fusion in pulsed gtaw. Industrial Robot: An International Journal.

  • Chen, W., Chin, B., et al. (1990). Monitoring joint penetration using infrared sensing techniques. Welding Journal, 69(4), 181s–185s.

    Google Scholar 

  • Chen, C., Lv, N., & Chen, S. (2021). Welding penetration monitoring for pulsed GTAW using visual sensor based on AAM and random forests. Journal of Manufacturing Processes, 63, 152–162.

    Article  Google Scholar 

  • Chen, S.-B., Zhang, Y., Qiu, T., & Lin, T. (2003). Robotic welding systems with vision-sensing and self-learning neuron control of arc welding dynamic process. Journal of Intelligent and Robotic Systems, 36(2), 191–208.

    Article  Google Scholar 

  • Chen, S., Zhao, D., Wu, L., & Lou, Y. (2000). Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part 2–butt joint welding. Welding Journal (USA), 79(6), 164.

    Google Scholar 

  • Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

  • Chokkalingham, S., Vasudevan, M., Sudarsan, S., & Chandrasekhar, N. (2012). Predicting weld bead width and depth of penetration from infrared thermal image of weld pool using artificial neural network. Insight-Non-Destructive Testing and Condition Monitoring, 54(5), 272–277.

    Article  Google Scholar 

  • Cho, H.-W., Shin, S.-J., Seo, G.-J., Kim, D. B., & Lee, D.-H. (2022). Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: Molybdenum material. Journal of Materials Processing Technology, 302, 117495.

    Article  Google Scholar 

  • Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUS). arXiv preprint arXiv:1511.07289.

  • Cruz, J. G., Torres, E. M., & Absi Alfaro, S. C. (2015). A methodology for modeling and control of weld bead width in the GMSW process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(5), 1529–1541.

    Article  Google Scholar 

  • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303–314.

    Article  Google Scholar 

  • Dharmawan, A. G., Xiong, Y., Foong, S., & Soh, G. S. (2020). A model-based reinforcement learning and correction framework for process control of robotic wire arc additive manufacturing, pp. 4030–4036 (IEEE).

  • Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2015). A multi-bead overlapping model for robotic wire and arc additive manufacturing (waam). Robotics and Computer-Integrated Manufacturing, 31, 101–110.

    Article  Google Scholar 

  • Doodman Tipi, A. R., Pariz, N., et al. (2015). Improving the dynamic metal transfer model of gas metal arc welding (GMAW) process. The International Journal of Advanced Manufacturing Technology, 76(1), 657–668.

    Article  Google Scholar 

  • Dupont, J. N., Marder, A. R., et al. (1995). Thermal efficiency of arc welding processes. Welding Journal-Including Welding Research Supplement, 74(12), 406s.

    Google Scholar 

  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.

    Article  Google Scholar 

  • Erdmann-Jesnitzer, F., Feustel, E., & Rehfeldt, D. (1967). Akustische untersuchungen am schweislichtbogen. Schw. und Schn, 19(3), 95–100.

    Google Scholar 

  • Fernández, A., Souto, Á., González, C., & Méndez-Rial, R. (2020). Embedded vision system for monitoring arc welding with thermal imaging and deep learning, pp 1–6 (IEEE).

  • Ghanty, P., et al. (2008). Artificial neural network approach for estimating weld bead width and depth of penetration from infrared thermal image of weld pool. Science and Technology of Welding and Joining, 13(4), 395–401.

    Article  Google Scholar 

  • Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks, pp. 249–256 (JMLR Workshop and Conference Proceedings).

  • Grondman, I., Busoniu, L., Lopes, G. A., & Babuska, R. (2012). A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1291–1307.

    Article  Google Scholar 

  • Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor, pp. 1861–1870 (PMLR).

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition, pp. 770–778.

  • Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

  • Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. et al. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Hopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5), 3–10.

    Article  Google Scholar 

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.

    Article  Google Scholar 

  • Horvat, J., Prezelj, J., Polajnar, I., & Čudina, M. (2011). Monitoring gas metal arc welding process by using audible sound signal. Strojniški vestnik-Journal of Mechanical Engineering, 57(3), 267–278.

    Article  Google Scholar 

  • Hou, Y., Liu, L., Wei, Q., Xu, X., & Chen, C. (2017). A novel DDPG method with prioritized experience replay, pp. 316–321 (IEEE).

  • Huang, G., Liu, Z., Maaten, L. V. D., & Weinberger, K. Q. (2017). Densely connected convolutional networks, 2261–2269. IEEE Computer Society.

  • Jin, Z., Li, H., & Gao, H. (2019). An intelligent weld control strategy based on reinforcement learning approach. The International Journal of Advanced Manufacturing Technology, 100(9), 2163–2175.

    Article  Google Scholar 

  • Jin, C., Shin, S., Yu, J., & Rhee, S. (2020). Prediction model for back-bead monitoring during gas metal arc welding using supervised deep learning. IEEE Access, 8, 224044–224058.

    Article  Google Scholar 

  • Johnson, J., Carlson, N., Smartt, H., & Clark, D. (1991). Process control of GMAW: Sensing of metal transfer mode. Welding Journal, 70(4), 91.

    Google Scholar 

  • Kershaw, J., Yu, R., Zhang, Y., & Wang, P. (2021). Hybrid machine learning-enabled adaptive welding speed control. Journal of Manufacturing Processes, 71, 374–383.

    Article  Google Scholar 

  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  • Kozamernik, N., Bračun, D., & Klobčar, D. (2020). Waam system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. The International Journal of Advanced Manufacturing Technology, 110(7), 1955–1968.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

    Article  Google Scholar 

  • Kumar, N. P., Vendan, S. A., & Shanmugam, N. S. (2016). Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in aa6061. Journal of Alloys and Compounds, 658, 255–264.

    Article  Google Scholar 

  • Lecun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), 1995.

    Google Scholar 

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  • LeCun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for back-propagation,1, 21–28.

  • Lee, C., Seo, G., Kim, D. B., Kim, M., & Shin, J.-H. (2021). Development of defect detection ai model for wire+ arc additive manufacturing using high dynamic range images. Applied Sciences, 11(16), 7541.

    Article  Google Scholar 

  • Li, Q., Li, G., Wang, X., & Wei, M. (2019). Diffusion welding furnace temperature controller based on actor-critic, pp. 2484–2487 (IEEE).

  • Li, Y., et al. (2022). A defect detection system for wire arc additive manufacturing using incremental learning. Journal of Industrial Information Integration, 27, 100291.

    Article  Google Scholar 

  • Li, Y., et al. (2022). Towards intelligent monitoring system in wire arc additive manufacturing: A surface anomaly detector on a small dataset. The International Journal of Advanced Manufacturing Technology, 120(7), 5225–5242.

    Article  Google Scholar 

  • Lotter, W., Kreiman, G., & Cox, D. (2016). Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.

  • Lü, F., Chen, H., Fan, C., & Chen, S. (2010). A novel control algorithm for weld pool control. Industrial Robot: An International Journal.

  • Lv, N., Xu, Y., Li, S., Yu, X., & Chen, S. (2017). Automated control of welding penetration based on audio sensing technology. Journal of Materials Processing Technology, 250, 81–98.

    Article  Google Scholar 

  • Ma, Y., Cuiuri, D., Shen, C., Li, H., & Pan, Z. (2015). Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding. Additive Manufacturing, 8, 71–77.

    Article  Google Scholar 

  • Madhvacharyula, A. S., et al. (2022). In situ detection of welding defects: A review. Welding in the World, 18, 1–18.

    Google Scholar 

  • Mathers, G. (2002). Weld defects and quality control. Welding of Aluminium and Its Alloys, 15, 199–215.

    Article  Google Scholar 

  • Mattera, G., & Mattera, R. (2023). Shrinkage estimation with reinforcement learning of large variance matrices for portfolio selection. Intelligent Systems with Applications. Forthcoming.

  • Menaka, M., Vasudevan, M., Venkatraman, B., & Raj, B. (2005). Estimating bead width and depth of penetration during welding by infrared thermal imaging. Insight-Non-Destructive Testing and Condition Monitoring, 47(9), 564–568.

    Article  Google Scholar 

  • Mezaache, M., Babes, B., & Chaouch, S. (2022). Optimization of welding input parameters using PSO technique for minimizing HAZ width in GMAW. Periodica Polytechnica Mechanical Engineering, 66(2), 99–108.

    Article  Google Scholar 

  • Mnih, V. et al. (2016). Asynchronous methods for deep reinforcement learning, pp. 1928–1937 (PMLR).

  • Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

    Article  Google Scholar 

  • Mozaffar, M., et al. (2018). Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manufacturing Letters, 18, 35–39.

    Article  Google Scholar 

  • Mu, H., et al. (2022). Layer-by-layer model-based adaptive control for wire arc additive manufacturing of thin-wall structures. Journal of Intelligent Manufacturing, 33(4), 1165–1180.

    Article  Google Scholar 

  • Nele, L., Mattera, G., & Vozza, M. (2022). Deep neural networks for defects detection in gas metal arc welding. Applied Sciences, 12(7), 3615.

    Article  Google Scholar 

  • Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence rate. 269, 543–547

  • Nguyen, H. D., et al. (2022). Rapid and accurate prediction of temperature evolution in wire plus arc additive manufacturing using feedforward neural network. Manufacturing Letters, 32, 28–31.

    Article  Google Scholar 

  • Nomura, K., Fukushima, K., Matsumura, T., & Asai, S. (2021). Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation. Journal of Manufacturing Processes, 61, 590–600.

    Article  Google Scholar 

  • O’Donoghue, B., Munos, R., Kavukcuoglu, K., & Mnih, V. (2016). Combining policy gradient and q-learning. arXiv preprint arXiv:1611.01626.

  • Ogoke, F., & Farimani, A. B. (2021). Thermal control of laser powder bed fusion using deep reinforcement learning. Additive Manufacturing, 46, 102033.

    Article  Google Scholar 

  • Pal, K., Bhattacharya, S., & Pal, S. K. (2010). Investigation on arc sound and metal transfer modes for on-line monitoring in pulsed gas metal arc welding. Journal of Materials Processing Technology, 210(10), 1397–1410.

    Article  Google Scholar 

  • Pan, H., Pang, Z., Wang, Y., Wang, Y., & Chen, L. (2020). A new image recognition and classification method combining transfer learning algorithm and mobilenet model for welding defects. IEEE Access, 8, 119951–119960.

    Article  Google Scholar 

  • Pedamonti, D. (2018). Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv preprint arXiv:1804.02763.

  • Penttilä, S., Kah, P., Ratava, J., & Eskelinen, H. (2019). Artificial neural network controlled GMAW system: Penetration and quality assurance in a multi-pass butt weld application. The International Journal of Advanced Manufacturing Technology, 105(7), 3369–3385.

    Article  Google Scholar 

  • Pernambuco, B. S. G. et al. (2019). Online sound based arc-welding defect detection using artificial neural networks, (pp. 263–268, IEEE).

  • Pinto-Lopera, J. E., ST Motta, J. M., & Absi Alfaro, S. C. (2016). Real-time measurement of width and height of weld beads in GMAW processes. Sensors, 16(9), 1500.

    Article  Google Scholar 

  • Pires, J. N., Loureiro, A., & Bölmsjo, G. (2006). Welding Robots: Technology, System Issues and Application. Springer.

    Google Scholar 

  • Polydoros, A. S., & Nalpantidis, L. (2017). Survey of model-based reinforcement learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2), 153–173.

    Article  Google Scholar 

  • Recht, B. (2019). A tour of reinforcement learning: The view from continuous control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 253–279.

    Article  Google Scholar 

  • Redmon, J. & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.

  • Roca, A. S., Fals, H., Fernández, J., Macías, E., & De La Parte, M. (2009). Artificial neural networks and acoustic emission applied to stability analysis in gas metal arc welding. Science and Technology of Welding and Joining, 14(2), 117–124.

    Article  Google Scholar 

  • Rohe, M., Stoll, B. N., Hildebrand, J., Reimann, J., & Bergmann, J. P. (2021). Detecting process anomalies in the GMAW process by acoustic sensing with a convolutional neural network (CNN) for classification. Journal of Manufacturing and Materials Processing, 5(4), 135.

    Article  Google Scholar 

  • Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems (Vol. 37). Cambridge: Department of Engineering, University of Cambridge.

    Google Scholar 

  • Schmidhuber, J.(1990). Artificial neural network. IEEE 112–127.

  • Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization, pp. 1889–1897 (PMLR).

  • Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

  • Shin, S., Jin, C., Yu, J., & Rhee, S. (2020). Real-time detection of weld defects for automated welding process base on deep neural network. Metals, 10(3), 389.

    Article  Google Scholar 

  • Silver, D., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.

    Article  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

  • Sivasakthivel, P., & Sudhakaran, R. (2018). Modelling and optimisation of welding parameters for multiple objectives in pre-heated gas metal arc welding process using nature instigated algorithms. Australian Journal of Mechanical Engineering.

  • Sreedhar, U., Krishnamurthy, C., Balasubramaniam, K., Raghupathy, V., & Ravisankar, S. (2012). Automatic defect identification using thermal image analysis for online weld quality monitoring. Journal of Materials Processing Technology, 212(7), 1557–1566.

    Article  Google Scholar 

  • Sumesh, A., et al. (2017). Establishing correlation between current and voltage signatures of the arc and weld defects in GMAW process. Arabian Journal for Science and Engineering, 42(11), 4649–4665.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). The MIT Press.

    Google Scholar 

  • Szegedy, C. et al. (2015). Going deeper with convolutions, pp. 1–9.

  • Tamari, R. (2016). Reinforce framework for stochastic policy optimization and its use in deep learning.

  • Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions on industrial informatics, 15(4), 2405–2415.

    Article  Google Scholar 

  • Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-learning, (Vol. 30).

  • Vishnuvaradhan, S., Chandrasekhar, N., Vasudevan, M., & Jayakumar, T. (2013). Intelligent modeling using adaptive neuro fuzzy inference system (anfis) for predicting weld bead shape parameters during a-tig welding of reduced activation ferritic-martensitic (rafm) steel. Transactions of the Indian Institute of Metals, 66(1), 57–63.

    Article  Google Scholar 

  • Wang, Y., et al. (2020). Weld reinforcement analysis based on long-term prediction of molten pool image in additive manufacturing. IEEE Access, 8, 69908–69918.

    Article  Google Scholar 

  • Wang, Y., et al. (2021). Coordinated monitoring and control method of deposited layer width and reinforcement in waam process. Journal of Manufacturing Processes, 71, 306–316.

    Article  Google Scholar 

  • Watkins, C. D. P. (1992). Q-learning. Machine Learning, 8(3), 279–292.

    Article  Google Scholar 

  • Wei, E., Farson, D., Richardson, R., & Ludewig, H. (2001). Detection of weld surface porosity by statistical analysis of arc current in gas metal arc welding. journal of Manufacturing Processes, 3, 50–59.

    Article  Google Scholar 

  • Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3), 229–256.

    Article  Google Scholar 

  • Williams, S. W., et al. (2016). Wire+ arc additive manufacturing. Materials Science and Technology, 32(7), 641–647.

    Article  Google Scholar 

  • Wu, B., Pan, Z., van Duin, S., & Li, H. (2019). in Thermal behavior in wire arc additive manufacturing: characteristics, effects and control pp. 3–18 (Springer).

  • Wu, B., et al. (2018). A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. Journal of Manufacturing Processes, 35, 127–139.

    Article  Google Scholar 

  • Wu, C., Gao, J., & Hu, J. (2006). Real-time sensing and monitoring in robotic gas metal arc welding. Measurement Science and Technology, 18(1), 303.

    Article  Google Scholar 

  • Xia, C., et al. (2020). Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing. The International Journal of Advanced Manufacturing Technology, 110(7), 2131–2142.

    Article  Google Scholar 

  • Xia, C., et al. (2020). Model predictive control of layer width in wire arc additive manufacturing. Journal of Manufacturing Processes, 58, 179–186.

    Article  Google Scholar 

  • Xia, C., et al. (2022). Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. Journal of Intelligent Manufacturing, 33(5), 1467–1482.

    Article  Google Scholar 

  • Xia, C., Pan, Z., Fei, Z., Zhang, S., & Li, H. (2020). Vision based defects detection for keyhole tig welding using deep learning with visual explanation. Journal of Manufacturing Processes, 56, 845–855.

  • Xia, C., Pan, Z., Li, Y., Chen, J., & Li, H. (2022). Vision-based melt pool monitoring for wire-arc additive manufacturing using deep learning method. The International Journal of Advanced Manufacturing Technology, 120(1), 551–562.

    Article  Google Scholar 

  • Xiong, J., & Zhang, G. (2013). Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision. Measurement Science and Technology, 24(11), 115103.

    Article  Google Scholar 

  • Xiong, J., Zhang, G., Hu, J., & Wu, L. (2014). Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. Journal of Intelligent Manufacturing, 25(1), 157–163.

    Article  Google Scholar 

  • Xu, F., et al. (2018). Realisation of a multi-sensor framework for process monitoring of the wire arc additive manufacturing in producing ti-6al-4v parts. International Journal of Computer Integrated Manufacturing, 31(8), 785–798.

    Article  Google Scholar 

  • Yin, L., Wang, J., Hu, H., Han, S., & Zhang, Y. (2019). Prediction of weld formation in 5083 aluminum alloy by twin-wire CMT welding based on deep learning. Welding in the World, 63(4), 947–955.

    Article  Google Scholar 

  • Yu, R., Han, J., Bai, L., & Zhao, Z. (2021). Identification of butt welded joint penetration based on infrared thermal imaging. Journal of Materials Research and Technology, 12, 1486–1495.

    Article  Google Scholar 

  • Yusof, M., Kamaruzaman, M., Ishak, M., & Ghazali, M. (2017). Porosity detection by analyzing arc sound signal acquired during the welding process of gas pipeline steel. The International Journal of Advanced Manufacturing Technology, 89(9), 3661–3670.

    Article  Google Scholar 

  • Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks (pp. 818–833). Springer.

    Google Scholar 

  • Zhang, Z., Wen, G., & Chen, S. (2019). Weld image deep learning-based on-line defects detection using convolutional neural networks for al alloy in robotic arc welding. Journal of Manufacturing Processes, 45, 208–216.

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis, GM and LN; Investigation, GM and DP; Methodology, GM and LN; Supervision, LN All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Giulio Mattera.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: A brief bliometric analysis

Appendix A: A brief bliometric analysis

In the introduction of this work some main bibliometric results are presented, which come from a brief bibliometric analysis conducted with the open-source R package bibliometric (Aria & Cuccurullo, 2017) using two different queries from Scopus website:

  • 1: WAAM OR (Wire AND Arc AND Additive AND Manufacturing)

  • 2: WAAM OR (wire AND arc AND additive AND manufacturing) OR (arc AND welding) OR GTAW OR GMAW) AND (control OR monitoring OR model) AND ((machine AND learning) OR (reinforcement AND learning) OR (artificial AND intelligence) OR (neural AND network))

Using the first query some main results are presented, such as the annual growth rate and the number of total citations. Furthermore, the top 6 keywords are presented, once a clustering activity is made limiting to the first 200 most frequent keywords. Additional information is presented in this appendix about authors and journals.

Starting from the journals the top-15 productive journals are reported in Fig. 39, and as reported in Fig. 40, The first article, written by Wang and Williams from Cranfield university UK, was published in International Journal of Advanced Manufacturing Technology, which has been the most important journal about this topic until 2018, when it was passed by Additive Manufacturing.

For what concern authors and institution, as shown in Fig. 41, 42, 43, the more productive research center, from both citation and number of produced documents, is the Wollongong University in New South Wales, Australia, and the most important authors are Pan Z and Li H. It is also fundamental to cite 2 authors Williams S. and Ding J. from Cranfield university. Just to conclude, from the conducted bibliographic analysis is possible to note that the most active author in the field of artificial intelligence application on Wire Arc Additive Manufacturing is Pan Z. and his research team at the University of Wollongong.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattera, G., Nele, L. & Paolella, D. Monitoring and control the Wire Arc Additive Manufacturing process using artificial intelligence techniques: a review. J Intell Manuf 35, 467–497 (2024). https://doi.org/10.1007/s10845-023-02085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-023-02085-5

Keywords

Navigation