Skip to main content
Log in

Real-time defect detection of TFT-LCD displays using a lightweight network architecture

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The mura defects of thin film transistor-liquid crystal display (TFT-LCD) panels have low contrast and random locations, which makes it impossible for us to correctly evaluate the number and type of mura defects on the image in the field inspection. In response to the above problems, this paper proposes a lightweight YOLO-ADPAM detection method based on an attention mechanism. First, we designed a K-means-ciou++ clustering algorithm using the Complete-Intersection-Over-Union loss function to cluster the anchor box size of the display defect dataset, making the bounding box regression more accurate and stable and improving the recognition and positioning accuracy of the algorithm. Second, we design a parallel attention module, combining the advantages of the channel and spatial attention mechanisms to effectively extract helpful information from feature maps. The channel attention branch can compensate for the defect information lost by global average pooling to a certain extent, and selecting a larger convolution kernel in the spatial attention branch is beneficial to retain crucial spatial information. Third, using atrous spatial pyramid pooling and depthwise separable convolution in the Neck network can further improve the receptive field of the feature map and improve the detection accuracy of the network. The experimental results show that the mAP of our proposed YOLO-ADPAM algorithm in TFT-LCD defect detection reaches 98.20%, and the detection speed reaches 83.23 FPS, which meets the detection accuracy and real-time requirements of TFT-LCD defect detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Funding

Funding was provided by Natural Science Foundation of China (Grant Nos. 51965029 and 52065035).

Author information

Authors and Affiliations

Authors

Contributions

PC methodology, manuscript drafting, conceptualization, manuscript revision, experimental data curation, manuscript review, and supervision. SW conceptualization, manuscript revision, experimental data curation, and manuscript review. YS experimental data curation and manuscript review. MC experimental data curation and manuscript review. XM supervision. YC supervision. ZC supervision. SC supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mingfang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Chen, M., Wang, S. et al. Real-time defect detection of TFT-LCD displays using a lightweight network architecture. J Intell Manuf 35, 1337–1352 (2024). https://doi.org/10.1007/s10845-023-02110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-023-02110-7

Keywords

Navigation