Skip to main content

Advertisement

Log in

Learning the manufacturing capabilities of machining and finishing processes using a deep neural network model

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this work, we present a deep neural network model to automatically learn the capabilities of discrete manufacturing processes such as machining and finishing from design and manufacturing data. By concatenating a 3D Convolutional Neural Network (3D CNN) with a simple Multilayer Perceptron (MLP), we show that the model can learn the capabilities of a manufacturing process described in terms of the part features and quality it can generate, and the materials it can process. Specifically, the proposed method takes the part feature geometry, material properties, and quality information contained in a part design as inputs and trains the deep neural network model to predict the manufacturing process label as output. We present an example implementation of the proposed method using a synthesized dataset to illustrate automatic manufacturing process selection. The performance of the proposed model is compared with the performance of interpretable data-driven classification methods such as decision trees and random forests. By comparing the performance with different combinations of input information to be included during training, it is evident that part quality information is necessary for characterizing the capabilities of finishing processes while material information further improves the model’s ability to discriminate between the different process capabilities. The superior prediction accuracy of the proposed deep neural network model demonstrates its potential for use in future data-driven Computer Aided Process Planning (CAPP) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported in part by NIST Grants 70NANB19H067 and 60NANB20D205. Certain commercial systems are identified in this paper. Such identification does not imply recommendation or endorsement by NIST. Nor does it imply that the products identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxuan Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Melkote, S.N. Learning the manufacturing capabilities of machining and finishing processes using a deep neural network model. J Intell Manuf 35, 1845–1865 (2024). https://doi.org/10.1007/s10845-023-02134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-023-02134-z

Keywords

Navigation