Skip to main content

Advertisement

Log in

Control of an Industrial Robot using Acceleration Feedback

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

A controller using acceleration feedback has been applied to a flexible robot for which the position and velocity of the load are not measured. It is shown that acceleration feedback allows an exact tracking of the motor position, irrespective of the non-linear flexibilities of the axes and of the measurement disturbances. This easy-to-tune algorithm whose main control parameters are the modal masses of the motor and load part, and only consists of a positive acceleration feedback plus a PD controller, has been validated on an industrial robot with orthogonal axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barre, P.J., Hautier, J.P., Charley, J.: The use of modal analysis to improve the axis control, Fourth International Congress on Sound and Vibration, St Petersburg, Russia, June 24–27, pp. 1531–1538 (1996)

  2. Barre, P.-J., Bearee, R., Borne, P., Dumetz, E.: Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. J. Intell. Robot. Syst. 42, 275–293 (2005)

    Article  Google Scholar 

  3. Béarée, R., Barre, P.J., Bloch, S.: Influence of high feed rate machine tool control parameters on the contouring accuracy. J. Intell. Robot. Syst. 40, 321–342 (2004)

    Article  Google Scholar 

  4. De Jager, B.: Acceleration assisted tracking control. IEEE Control Syst. Mag. 14, 20–27 (1994)

    Article  MathSciNet  Google Scholar 

  5. Ellis, G.: Control System Design Guide, 2nd edn. Academic, Boston (2000)

    Google Scholar 

  6. Erkorkmaz, K., Altintas, Y.: High speed CNC system design. Part III. High speed tracking and contouring control of feed drives. Int. J. Mach. Tools Manuf. 41, 1637–1658 (2001)

    Article  Google Scholar 

  7. García-Benitez, E., Watkins, J., Yurkovich, S.: Nonlinear control with acceleration feedback for a two-link flexible robot. Control Eng. Pract. 1, 989–997 (1993)

    Article  Google Scholar 

  8. Groß, H., Harmann, J., Wiegärtner, G.: Electrical feed drives in automation, MCD corporate Publishing, SIEMENS, 2001

  9. Hori, Y., Iseki, H., Sigiura, K.: Basic consideration of vibration suppression and disturbance rejection control of multi-inertia system using state feedback and load acceleration control. IEEE Trans. Ind. Appl. 30, 889–896 (1994)

    Article  Google Scholar 

  10. Khalil H.K.: Nonlinear Systems, Prentice Hall (2002)

  11. Kosuge, K., Umetsu, M., Furuta, K.: Robust linearization, and control of robot arm using acceleration feedback. Proceedings of ICCON ’89. IEEE International Conference on Control and Applications, April 3–6, pp. 161–165 (1989)

  12. Luh, J., Walker, M., Paul, R., Resolved-acceleration control of mechanical manipulators. IEEE Trans. Autom. Contr. 25, 468–474 (1980)

    Article  MATH  Google Scholar 

  13. Luo, G., Saridis,G.: L-Q design of PID controllers for robot arms. IEEE J. Robot. Autom. 1, 152–159 (1985)

    Google Scholar 

  14. Luo, G., Saridis, G.: Robust compensation for a robotic manipulator. IEEE Trans. Autom. Contr. 29, 564–567 (1984)

    Article  MATH  Google Scholar 

  15. McInroy, J.E., Saridis, G.N.: Acceleration and torque feedback for robotic control: Experimental results. J. Robot. Syst. 7, 813–832 (1990)

    Article  Google Scholar 

  16. Meirovich, L.: Principles and Techniques of Vibrations, Prentice Hall (1994)

  17. Moatemri, M.H., Schmidt, P.B., Lorenz, R.D.: Implementation of a DSP-based, acceleration feedback robot controller: Practical issues and design limits. Conference Record of 1991, IEEE IAS Annual Meeting, pp. 1425–1430 (1991)

  18. Readman, M., Belanger, P.: Acceleration feedback for flexible joint robots. In: Proceedings of the 30th IEEE Conference on Decision and Control, vol. 2, 1385–1390 (11–13 Dec. 1991)

  19. Schmidt, P.B., Lorenz, R.D.: Design principles and implementation of acceleration feedback to improve performance of DC drives. Conference Record of 1990, IEEE IAS Annual Meeting, pp. 422–427

  20. Studenny, J., Belanger, P.R., Daneshmend, L.K.: A digital implementation of the acceleration feedback control law on a PUMA 560 manipulator. In: Proceedings of the 30th IEEE Conference on Decision and Control, vol. 3, pp. 2639–2648 (11–13 Dec. 1991)

  21. Tarn, T.-J., Wu, Y., Xi, N., Isidori, A.: Force regulation and contact transition control. IEEE Control Syst. Mag. 16, 32–40 (1996)

    Article  Google Scholar 

  22. Xu, W.L., Han, J.D.: Joint acceleration feedback control for robots: Analysis, sensing and experiments. Robot. Comput.-Integr. Manuf. 16, 307–320 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Jean Barre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumetz, E., Dieulot, JY., Barre, PJ. et al. Control of an Industrial Robot using Acceleration Feedback. J Intell Robot Syst 46, 111–128 (2006). https://doi.org/10.1007/s10846-006-9042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-006-9042-8

Key words