Abstract
In this paper we propose a neural network adaptive controller to achieve end-effector tracking of redundant robot manipulators. The controller is designed in Cartesian space to overcome the problem of motion planning which is closely related to the inverse kinematics problem. The unknown model of the system is approximated by a decomposed structure neural network. Each neural network approximates a separate element of the dynamical model. These approximations are used to derive an adaptive stable control law. The parameter adaptation algorithm is derived from the stability study of the closed loop system using Lyapunov approach with intrinsic properties of robot manipulators. Two control strategies are considered. First, the aim of the controller is to achieve good tracking of the end-effector regardless the robot configurations. Second, the controller is improved using augmented space strategy to ensure minimum displacements of the joint positions of the robot. Simulation examples are also presented to verify the effectiveness of the proposed approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Benallegue, A., Meddah, D.Y., Daachi, B.: Neural network identification and control of a class of non linear systems. In: 16th IMACS WORLD CONGRESS 2000 on Scientific Computation, Applied Mathematics and Simulation (Lausanne, Switzerland), August 21–25 2000
Benallegue, A., Meddah, D.Y., Daachi, B.: Stable adaptive controller using mlp neural networks for rigid robot manipulators. Int. J. Robot. Autom. 16(3), 124–131 (2001)
Cherif, A., Perdereau, V., Drouin, M.: On-line neural network algorithm for the constrained motion planning of redundant manipulators. In: Proc. of MCCS’97, Minneapolis, USA, 1997
Daachi, B., Ramdane-Cherif, A., Benallegue, A.: Memory neural network for kinematic inversion of constrained redundant robot manipulators. In: In International Conference on Advanced Robotics (ICAR) Coimbra, Portugal, June 30–July 3, 2003
Hasan, A.T., Hamouda, A.M.S., Ismail, N., Al-Assadi, H.M.A.A.: An adaptive-learning algorithm to solve the inverse kinematics problem of a 6 d.o.f serial robot manipulator. J. Adv. Eng. Softw. 37(7), 432–438 (2005)
Kim, S.W., Park, K.B., Lee, J.J.: Redundancy resolution of robot manipulators using optimal kinematic control. In: Proc. of ICRA, San Diego, 1994
Klein, C.A., Huang, C.H.: Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. SMC-13, 245–250 (1983)
Lewis, F.L., Liu, K., Yesildrek, A.: Neural net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 6(3), 703–715 (May 1995)
De Luca, A., Lanari, L., Oriolo, G.: Control of redundant robots on cyclic trajectories. In: Proc. of ICRA, Nice, France, 1992
Mayorga, R.V., Sanongboon, P.: Inverse kinematics and geometrically bounded singularities prevention of redundant manipulators: An artificial neural network approach. J. Robot. Auton. Syst. 53(3), 164–176 (2005)
Meddah, D.Y., Benallegue, A.: A stable neuro-adaptive controller for rigid robot manipulators. J. Intell. Robot. Syst. 20, 181–193 (1997)
Nakamura, M., Zhang, T.: Nonlinear controller construction based on a model with state-depended representation for nonlinear system. Int. J. Syst. Sci. 35(3), 151–158 (2004)
Nakamura, Y., Hanafusa, H.: Optimal redundancy control of robot manipulators. Int. J. Rob. Res. 6(1), 32–42 (1987)
Hauser, J., Hsu, P., Sastry, S.: Dynamic control of redundant manipulators. J. Robot. Syst. 16(2), 133–148 (1989)
Quoy, M., Moga, S., Gaussier, P.: Dynamical neural networks for top-down robot control. IEEE Trans. Syst. Man Cybern., Part A, Syst. Humans 33(4), 523–532 (2003)
Ramdane-Cheri, A., Daachi, B., Benallegue, A., Levy, N.: Kinematics inversion. In: In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002). EPFL, Switzerland, September 30–October 4, 2002
Amar Ramdane-Cherif. Inversion Des Modèles Géométrique et Cinématique D’un Robot Redondant: Une Solution Neuronale Adaptative. PhD thesis, Université Pierre et Marie Curie, 1998
Shamir, T.: Repeatability of redundant manipulators: Mathematical solution of the problem. IEEE Trans. Automat. Contr. 35, 1004–1009 (1988)
Temurtas, F., Temurtas, H., Yumusak, N.: Application of neural generalized predictive control to robotic manipulators with a cubic trajectory and random disturbances. J. Robot. Auton. Syst. 54(1), 74–83 (2006)
Wu, T.-M.: The inverse kinematics problem of spatial 4p3r robot manipulator by the homotopy continuation method with an adjustable auxiliary homotopy function. J. Nonlinear Anal. 64(10), 2373–2380 (2006)
Zhang, T., Nakamura, M., Goto, S., Kyura, N.: High accurate contour control of an articulated robot manipulator using a Gaussian neural network. Industrial Robot – An International Journal 32(5), 408–418 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Daachi, B., Benallegue, A. A Neural Network Adaptive Controller for End-effector Tracking of Redundant Robot Manipulators. J Intell Robot Syst 46, 245–262 (2006). https://doi.org/10.1007/s10846-006-9060-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-006-9060-6