Abstract
In this paper, a new robust control law is considered for controlling robot manipulators subjected to uncertainties. The control law is derived as a result of analytical solution from the Lyapunov function, thus stability of the uncertain system is guaranteed. Apart from previous studies, uncertainty bound and adaptation gain matrix are updated in time with the estimation law to control the system properly and uncertainty bound is determined using a trigonometric function of robot kinematics, inertia parameters and tracking error while adaptation gain matrix is determined using a trigonometric function of robot kinematics and tracking error. Application to a two-link robotic manipulator is presented and numerical simulations are included.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- q, \(\dot{q}\) and \(\ddot{q}\), ɛR n :
-
Vectors of joint position, velocity and acceleration of robot
- M(q) ɛR n×n, \(C(q,\ \dot{q})\dot{q}\) and G(q), ɛR n :
-
Inertia matrix, centripetal/coriolis and gravitational vectors
- q d, \(\dot{q}_{d}\) and \(\ddot{q}_{d}\), ɛR n :
-
Desired position, velocity and acceleration vectors
- \(\tilde{q} = q_{d} - q,\;\dot{{\tilde{q}}} = \dot{q}_{d} - \dot{q},\;\varepsilon R^{n}\) :
-
Actual position and velocity errors
- \(Y(q,\ \dot{q},\ \ddot{q}),\;\varepsilon R^{{nxp}}\) :
-
A matrix which is a function of joint positions, velocities and accelerations
- \(Y(q,\ \dot{q},\ \dot{q}_{r},\ \ddot{q}_{r})\varepsilon R^{{nxp}}\) :
-
A control action of inverse dynamics type which ensures an approximate compensation of nonlinear effects and joint decoupling
- Λ, K, and B ɛR n×n :
-
Positive definite diagonal matrixes
- K σ ɛR n :
-
A vector of PD action
- ɛ > 0:
-
A positive number
- π 0 ɛR p :
-
A fixed vector of nominal, loaded arm parameters and their upper bounds
- ρ ɛR :
-
Parametric uncertainty
- \(\hat{\rho }(t)\varepsilon R^{p}\) :
-
Estimated upper bound
- α, β, γ :
-
Real numbers
- γ 1, γ 2, ... γ p :
-
Real numbers
- where λ 1, λ 2, .... λ p and α 1, α 2, ....α p :
-
Real numbers
- a, b ɛR :
-
Real numbers
References
Bekit, B.W., Whidborne, J.F., Seneviratne, L.D.: Smooth robust control or robot manipulators. In: Proceeding of Mechatronics 98, pp. 275–280. Elsevier, Amsterdam (1998)
Burkan, R., Uzmay, İ.: Upper bounding estimation for robustness to the parameter uncertainty in trajectory control of robot arm. J. Robotics Autonomous Syst. 45, 99–110 (2003)
Corless, M., Leitmann, G.: Continuous feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Contr. 26, 1139–1144 (1981)
Craig, J.J., Hsu, P., Sastry, S.S.: Adaptive control of robot manipulator. Int. J. Rob. Res. 6, 16–28 (1987)
Egeland, O., Godhavn, J.M.: A note on Lyapunov stability for adaptive robot control. IEEE Trans. Autom. Contr. 39(8), 1671–1673 (1994)
Jaritz, A., Spong, M.W.: An experimental comparison of robust control algorithms on a direct drive manipulators. IEEE Trans. Control Syst. Technol. 4(6), 627–640 (1996)
Koo, K.M., Kim, J.H.: Robust control of robot manipulators with parametric uncertainty. IEEE Trans. Autom. Contr. 39(6), 1230–1233 (1994)
Leitmann, G.: On the efficiency of nonlinear control in uncertain linear system. J. Dyn. Syst. Meas. Control 102, 95–102 (1981)
Liu, G., Goldenberg, A.A: On robust saturation control of robot manipulators. In: Proc. 32nd Conf. Decision and Contr., San Antonio, Texas, pp. 2115–2120, 1993
Liu, G., Goldenberg, A.A.: Uncertainty decomposition-based robust control of robot manipulators. IEEE Trans. Control Syst. Technol. 4, 384–393 (1996)
Middleton, R.H., Goodwith, G.C.: Adaptive computed torque control for rigid link manipulators. Syst. Control Lett. 10, 9–16 (1988)
Mnif, F., Boukas, E.K., Saad, M.: Robust control for constrained robot manipulators. J. Dyn. Syst. Meas. Control 121, 129–133 (1999)
Ortega, R., Spong, M.W.: Adaptive motion control of rigit robots: A tutorial. Automatica 25, 877–888 (1989)
Slotine, J.E.: The robust control of robot manipulators. Int. J. Rob. Res. 4, 49–63 (1985)
Slotine, J.J., Li, W.: On the adaptive control of robotic manipulators. Int. J. Rob. Res. 6(3), 49–59 (1987)
Spong, M.W.: On the robust control of robot manipulators. IEEE Trans. Automat. Control 37, 1782–1786 (1992)
Spong, M.W., Ortega, R., Kelley, R.: Comment on adaptive manipulator control: A case study. IEEE Trans. Automat. Control 35(6), 761–762 (1990)
Spong, M.W., Vidyasagar, M.: Robust linear compensator design for nonlinear robotic control. IEEE J. Robot. Autom. 3(4), 345–350 (1987)
Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)
Tang, Y., Tomizuka, M., Guerrero, G.: Robust control of rigid robots. In: Proceedings of the 36th Conference on Decision & Control, San Diego, California USA, pp. 791–796 (1997)
Tang, Y., Tomizuka, M., Guerrero, G., Montemayor, G.: Decentralized robust control of mechanical systems. IEEE Trans. Automat. Contr. 45(4), 771–776 (2000)
Yaz, E.: Comments on the robust control of robot manipulators. IEEE Trans. Automat. Contr. 38(38), 511–512 (1993)
Zenieh, S., Corless, M.: Simple robust tracking controllers for robotic manipulators. In: Proc. SYROCO'94, Capari, Italy, Sept., pp. 193–198 (1994)
Zenieh, S., Corless, M.: A simple robust r-α tracking controllers for uncertain fully-actuated mechanical systems. J. Dyn. Syst. Meas. Control 119, 821–825 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Burkan, R. Upper Bounding Estimation for Robustness to the Parameter Uncertainty with Trigonometric Function in Trajectory Control of Robot Arms. J Intell Robot Syst 46, 263–283 (2006). https://doi.org/10.1007/s10846-006-9061-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-006-9061-5