Abstract
Slip-resistant robust grasping of objects during remote manipulation remains one of the major open issues in robotics. Finer measurement of tangential force and slippage need to be considered for the task planning and control of robotic gripper in operation. Design and development of such a multi-sensory tactile array is reported in this paper, which is aimed for direct use in an instrumented jaw intelligent robot gripper for potentially hazardous radioactive environments. A new design has been reported in the paper, wherein sensing members of the prototype follow a combination of beam (bending) and truss-type (axial deformation) behavior under external loadings. Various characteristics of the sensor, viz. condition number, static and dynamic stiffness, sensitivity and repeatability have been evaluated, based on the results from field trials of the prototype. Besides the comparatively larger prototype, a miniaturized version of the sensor has also been developed and tested for object grasping in real-time.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nafari, A., Danilov, A., Rödjegård, H., Enoksson, P., Olin, H.: A micro-machined nano-indentation force sensor. Sens. Actuators A 123–124, 44–49 (Sept. 2005)
Bayo, E., Stubbe, J.R.: Six-axis force sensor evaluation and a new type of optimal frame truss design for robotic applications. J. Robot. Syst. 6(2), 191–208 (1989)
Blasquez, G., Douziech, C., Pons, P.: Analysis, characterization and optimization of temperature coefficient parameters in capacitive pressure sensors. Sens. Actuators A 93(1), 44–47 (August 2001)
Bracke, W., Merken, P., Puers, R., Van Hoof, C.: Design methods and algorithms for configurable capacitive sensor interfaces. Sens. Actuators A 125(1), 25–33 (Oct. 2005)
Brock, D.L.: Enhancing the dexterity of a robot hand using controlled slip. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 249–251, 1988
Butler, J.C., Vigliotti, A.J., Verdi F.W., Walsh, S.M.: Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor. Sens. Actuators A 102(1–2), 61–66 (Dec. 2002)
Chang, S.-P., Lee, J.-B., Allen, M.G.: Robust capacitive pressure sensor array. Sens. Actuators A 101(1–2), 231–238 (Sept. 2002)
Claudio, M.: Slip detection and control using tactile and force sensors. IEEE/ASME Trans. Mechatron. 5(3), 235–243 (Sept. 2000)
Dekhil, M., Henderson, T.C.: Instrumented sensor system architecture. Int. J. Rob. Res. 17(4), 402–417 (April 1998)
Dornfeld, D., Handy, C.: Slip detection using acoustic emission signal analysis. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1868–1875, 1987
Du, L., Kwon, G., Arai, F., Fukuda, T., Itoigawa, K., Tukahara, Y.: Structure design of micro touch sensor array. Sens. Actuators A 107(1), 7–13 (Oct. 2003)
Fearing, R.S., Hollerbach, J.M.: Basic solid mechanics for tactile sensing. Int. J. Rob. Res. 4(3), 40–54 (Fall 1985)
Fearing, R.S.: Tactile sensing mechanisms. Int. J. Rob. Res. 9(3), 3–23 (June 1990)
Heerens, W.C.: Multi-terminal capacitive sensors. J. Phys., E J. Sci. Instrum. 15, 137–141 (1982)
Heerens, W.C.: Application of capacitance techniques in sensor design. J. Phys., E J. Sci. Instrum. 19, 897–906 (1986)
Howe, R.D., Cutkosky, M.R.: Sensing skin acceleration for slip and texture perception. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 145–150, 1989
Howard, R.N., Lee, M.H.: A survey of robot tactile sensing technology. Int. J. Rob. Res. 8(3), 3–30 (June 1989)
Huh, K., Stein, J.L.: A non-normality measure of the condition number for monitoring and control. Trans. Am. Soc. Mech. Eng. – J. Dyn. Syst. Meas. Control 119(2), 217–222 (June 1997)
Ko, W.H., Bao, M.-H., Hong, Y.-D.: A high sensitivity integrated-circuit capacitive pressure transducer. IEEE Trans. Electron Devices ED-29(1), 48–56 (Jan. 1982)
Kosel, P.B., Munro, G.S., Vaughan, R.: Capacitive transducers for accurate displacement control. IEEE Trans. Instrum. Meas. IM-30(2), 114–123 (June 1981)
Lee, Y.S., Wise, K.D.: A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity. IEEE Trans. Electron Devices ED-29(1), 42–48 (Jan. 1982)
Marko, H., Darko, B., Andreja, B., Janez, B., Janez, H., Jena, C., Walter, S., Heinz, H., Roland, R., Leszek, G., Andrej, D., Jaroslaw, K.: Thick-film resistors on various substrates as sensing elements for strain-gauge applications. Sens. Actuators A 107(3), 261–272 (Nov. 2003)
Nilsson, M.: Tactile sensors and other distributed sensors with minimal wiring complexity. IEEE/ASME Trans. Mechatron. 5(3), 253–257 (Sept. 2000)
Novak, J.L.: Initial design and analysis of a capacitive sensor for shear and normal force measurement. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 137–144, 1989
Orhan, A., Tayfun, A., Khalil, N.: A wireless batch sealed absolute capacitive pressure sensor. Sens. Actuators A 95(1), 29–38 (Dec. 2001)
Russell, A.R.: Compliant-skin tactile sensor. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1645–1648, 1987
Ryutaro, O., Hideki, N.: Strain sensors of shape memory alloys using acoustic emissions. Sens. Actuators A 122(1), 39–44 (July 2005)
Sander, C.S., Knutti, J.W., Meindl, J.D.: A monolithic capacitive pressure sensor with pulse–period output. IEEE Trans. Electron Devices ED-27(5), 927–930 (May 1980)
Sato, H., Fukuda, T., Arai, F., Itoigawa, K., Tsukahara, Y.: Parallel-beam sensor/actuator unit and its application to the gyroscope. IEEE/ASME Trans. Mechatron. 5(3), 266–271 (Sept. 2000)
Smith, M.J.S., Bowman, L., Meindl, J.D.: Analysis, design and performance of a capacitive pressure sensor IC. IEEE Trans. Biomed. Eng. BME-33(2), 163–174 (Feb. 1986)
Sultan, C., Skelton, R.: A force and torque tensegrity sensor. Sens. Actuators A 112(2–3), 220–231 (May 2004)
Suzuki, K., Najafi, K., Wise, K.D.: A 1024-element high performance silicon tactile imagers. IEEE Trans. Electron Devices 37(8), 1852–1859 (August 1990)
Svinin, M.M., Uchiyama, M.: Optimal geometric structures of force/torque sensors. Int. J. Rob. Res. 14(6), 560–573 (Dec. 1995)
Uchiyama, M., Bayo, E., Palma-Villalon, E.: A systematic design procedure to minimize a performance index for robot force sensors. Trans. Am. Soc. Mech. Eng. – J. Dyn. Syst. Meas. Control 113, 388–394 (Sept. 1991)
Ueda, J., Ikeda, A., Ogasawara, T.: Grip-force control of an elastic object by vision-based slip-margin feedback during the incipient slip. IEEE Trans. Robot. Autom. 21(6), 1139–1147 (Dec. 2005)
Voyles, R.M., Morrow, J.D., Khosla, P.K.: The shape from motion approach to rapid and precise force/torque sensor calibration. Trans. Am. Soc. Mech. Eng. – J. Dyn. Syst. Meas. Control 119(2), 229–235 (June 1997)
Zhou, M.-X., Huang, Q.-A., Qin M.: Modeling, design and fabrication of a triple-layered capacitive pressure sensor. Sens. Actuators A 117(1), 71–81 (Jan. 2005)
Zhu, F., Spronck, J.W.: A simple capacitive displacement sensor. Sens. Actuators A 26(1), 265–269 (March 1991)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Roy, D. Design and Developmental Metrics of a ‘Skin-Like’ Multi-Input Quasi-Compliant Robotic Gripper Sensor Using Tactile Matrix. J Intell Robot Syst 46, 305–337 (2006). https://doi.org/10.1007/s10846-006-9062-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-006-9062-4