Skip to main content
Log in

Remote Visual Servoing of a Robot Manipulator via Internet2

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Visual servoing is a powerful approach to enlarge the applications of robotic systems by incorporating visual information into the control system. On the other hand, teleoperation – the use of machines in a remote way – is increasing the number of applications in many domains. This paper presents a remote visual servoing system using only partial camera calibration and exploiting the high bandwidth of Internet2 to stream video information. The underlying control scheme is based on the image-based philosophy for direct visual servoing – computing the applied torque inputs to the robot based in error signals defined in the image plane – and evoking a velocity field strategy for guidance. The novelty of this paper is a remote visual servoing with the following features: (1) full camera calibration is unnecessary, (2) direct visual servoing does not neglect the robot nonlinear dynamics, and (3) the novel velocity field control approach is utilized. Experiments carried out between two laboratories demonstrated the effectiveness of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alex, J., Vikramaditya, B., Nelson, B.J.: A virtual reality teleoperator interface for assembly of hybrid MEMS prototypes. In: Proceedings of the 1998 ASME Design Engineering Technical Conference, Atlanta, GA, (September 1998)

  2. Campa, R., Kelly, R., Santibañez, V.: Windows-based real-time control of direct-drive mechanism: platform description and experiments. Mechatronics 14, 1021–1036 (2004)

    Google Scholar 

  3. Elhajj, I., Xi. N., Fung, W.K., Liu, Y.H., Hasegawa, Y., Fukuda, T.: Supermedia-enhanced Internet-based telerobotics. In: Proceedings of the IEEE, vol. 91, no. 3, pp. 396–421 (March 2003)

  4. Fitzpatrick, T.: Live remote control of a robot via the Internet. IEEE Robot. Autom. Mag. 6(3), 7–8 (September 1999)

    Article  Google Scholar 

  5. Ginhoux, R., Gangloff, J., de Mathelin, M., Soler, L., Arena Sanchez, M.A., Marescaux, J.: Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans. Robot. 21(1), 67–79 (February 2005)

    Article  Google Scholar 

  6. Goldenberg, K., Gentner, S., Sutter, C., Wiegley, J.: The mercury project: A feasibility study for Internet robots. IEEE Robot. Autom. Mag. 7(1), 35–40 (March 2000)

    Article  Google Scholar 

  7. Hou, C., Jia, S., Takase, K.: Real-time multimedia applications in the web-based robotic telecare system. J. Intell. Robot. Syst. 38, 135–153 (2003)

    Article  Google Scholar 

  8. Hu, H., Yu, L., Tsui, P.W., Zhou, Q.: Internet-based robotic systems for teleoperation. Int. J. Assembly Autom. 21(2), 1–10 (2001)

    MATH  Google Scholar 

  9. Hutchinson, S., Hager, G.D., Corke, P.: A tutorial on visual servoing. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)

    Article  Google Scholar 

  10. Jia, S., Takase, K.: Internet-based robotic system using CORBA as communication architecture. J. Intell. Robot. Syst. 34, 121–134 (2002)

    Article  MATH  Google Scholar 

  11. Kelly, R.: Robust asymptotically stable visual servoing of planar robots. IEEE Trans. Robot. Autom. 12, 759–766 (October 1996)

    Article  Google Scholar 

  12. Kelly, R., Moreno, J., Campa, R.: Visual servoing of planar robots via velocity fields. In: Proceedings of the 43rd IEEE Conference on Decision and control, Paradise Island, Bahamas, pp. 4028–4033 (December 2004)

  13. Kelly, R., Santibañez, V., Loría, A.: Control of Robot Manipulators in Joint Space. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  14. Koditschek, D.: Natural motion for robot arms. In: Proceedings 23rd IEEE Conference on Decision and Control, Las Vegas, NV, pp. 733–735 (1984)

  15. Li, P., Horowitz, R.: Passive velocity field control of mechanical manipulators. IEEE Trans. Robot. Autom. 15, 751–763 (1999)

    Article  Google Scholar 

  16. Luo, R.C., Chen, T.M.: Development of a multibehavior-based mobile robot for remote supervisory control through the Internet. IEEE/ASME Trans. Mechatronics 5(4), 376–385 (December 2000)

    Article  MathSciNet  Google Scholar 

  17. Luo, R.C., Su, K.L., Shen S.H., Tsai, K.H.: Networked intelligent robots through the Internet: issues and opportunities. In: Proceedings of the IEEE, vol. 91, no. 3, pp. 371–382 (2003)

  18. Marin, R., Sanz, P.J., Nebot, P., Esteller, R.: Multirobot Internet-based architecture for telemanipulation: experimental validation. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Washington, D.C., pp. 3565–3570 (2003)

  19. Marin, R., Wirz, R., Sans, P.J., Tirado, A.: Learning visual servoing techniques by remotely programming an Internet tele-lab: an education and training experience, Formatex (2005)

  20. Moreno, J., Kelly, R.: On manipulator control via velocity fields. In: Proceedings of the 15th IFAC World Congress, Barcelona, Spain (July 2002)

  21. Moreno, J., Kelly, R.: Velocity control of robot manipulators: analysis and experiments. Int. J. Control 76(14), 1420–1427 (September 2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nunes, J.: The eyes have it. Rob. World 23(4), 4–8 (May (2005)

    Google Scholar 

  23. Parvin, B., Taylor, J.R., Callahan, D.E., Johnston, W.E., Dahmen, U.: Visual servoing for online facilities. IEEE Comput. 30(7), (July 1997)

  24. Oboe, R., Fiorini, P.: A design and control environment for Internet-based telerobotics. Int. J. Rob. Res. 17(4), 433–449 (April 1998)

    Article  Google Scholar 

  25. Reynaga, G.: Sistema de vision en tiempo real para control de robots. M. Sc. Thesis, CICESE, Mexico, (August 2004)

  26. Rogers, J., Christensen, K.J.: A fluid-flow characterization of Internet1 and Internet2 traffic. In: Proceedings 14–16, Tampa, FL., pp. 509–513 (November 2001)

  27. Safaric, R., Debevc, M., Parkin, R.M., Uran, S.: Telerobotics experiments via Internet. IEEE Trans. Ind. Electron. 48(2), 424–431 (April 2001)

    Article  Google Scholar 

  28. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators, 2nd ed. Springer, Berlin Heidelberg New York (2000)

    Google Scholar 

  29. Sharma, R., Sutanto, H.: A framework for robot motion planning with sensor constraints. IEEE Trans. Robot. Autom. 13, 61–73 (1997)

    Article  Google Scholar 

  30. Spencer, R.: Vision-guided robots can save time and money. Rob. World 21(2), 14–15 (September 2003)

    Google Scholar 

  31. Stone A.: Internet2’s breakthroughs for academic research. IEEE Distrib. Syst. Online 5(1), 1–5 (January 2004)

    Article  Google Scholar 

  32. Taylor, K., Dalton, B., Trevelyan, J.: Web-based telerobotics. Robotica 17, 49–57 (January–February 1999)

    Article  Google Scholar 

  33. Taylor, K., Dalton, B.: Internet robots: a new robotics niche. IEEE Robot. Autom. Mag. 7(1), 27–34 (March 2000)

    Article  Google Scholar 

  34. Terrazas, A., Ostuni, J., Barlow, M.: Java Media APIS: Cross-platform Imaging, Media, and Visualization. Sams, Indiana (2002)

  35. Yeung, F.: Internet 2 scaling up the backbone for R&D. IEEE Internet Computing 1(2), 36–37 (March–April 1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Kelly.

Additional information

Work partially supported by CONACyT grant 45826 and CUDI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monroy, C., Kelly, R., Arteaga, M. et al. Remote Visual Servoing of a Robot Manipulator via Internet2. J Intell Robot Syst 49, 171–187 (2007). https://doi.org/10.1007/s10846-007-9134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9134-0

Keywords

Navigation