Skip to main content
Log in

A Comparative Study of Three Mapping Methodologies

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Map building is one of the core competencies of truly autonomous robots. Numerous techniques have been developed to represent the static and dynamic environments as well as the perceptional sensing frameworks so far. In this paper, on the basis of our previous work, we compare various sensor systems in building the static and dynamic environment map with the segment-based map and Fuzzy-Tuned Grid-Based Map (FTGBM) strategies. From the comparative results of experiments, we propose a probably efficient and trade-off framework which balances the accuracy of the map against the overall system cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thrun, S.: Robotic mapping: A survey, Technical Report CMU-CS-02-111, CMU, 2002

  2. Garulli, A., Giannitrapani, A., Rossi, A., Vicino, A.: Simultaneous localization and map building using linear features. In: Proceedings of the 2nd European Conference on Mobile Robots, Ancona (Italy), September 7–10, 2005

  3. Ip, Y.L.: Studies on map building and exploration strategies for Autonomous Mobile Robots (AMRs) [PhD dissertation]. Hong Kong: Department of Electrical Engineering, Hong Kong Polytechnic University (2003)

  4. Chow, K.M., Rad, A.B., Ip, Y.L.: Enhancement of probabilistic grid-based map for mobile robot applications. J. Intell. Robot. Syst. 34(2), 155–174 (2002), June

    Article  MATH  Google Scholar 

  5. Remolina, E., Kuipers, B.: Towards a general theory of topological maps. Artif. Intell. 152, 47–104 (2004)

    Article  MATH  Google Scholar 

  6. Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artif. Intell. 99(1), 21–71 (1998)

    Article  MATH  Google Scholar 

  7. Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Schulz, D., Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artif. Intell. 114(1–2), 3–55 (1999)

    Article  MATH  Google Scholar 

  8. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. J. Artif. Intell. Res. 11, 391–427 (1999)

    MATH  Google Scholar 

  9. Montemerlo, M., Whittaker, W., Thrun, S.: Conditional particle filters for simultaneous mobile robot localization and people-tracking. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 695–701, 2002

  10. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings. AAAI National Conference on Artificial Intelligence, pp. 593–598, 2002

  11. Biswas, R., Limketkai, B., Sanner, S., Thrun, S.: Towards object mapping in non-stationary environments with mobile robots. In: Proceedings of International Conference on Intelligent Robots and Systems, pp. 1014–1019, 2002

  12. Andrade-Cetto, J., Sanfeliu, A.: Concurrent map building and localization on indoor dynamic environments. Int. J. Pattern Recogn. Artif. Intell. 16, 361–374 (2002)

    Article  Google Scholar 

  13. Hähnel, D., Schulz, D., Burgard, W.: Mobile robot mapping in populated environments. Adv. Robot. 17(7), 579–598 (2003)

    Article  Google Scholar 

  14. Wolf, D., Sukhatme, G.: Mobile robot simultaneous localization and mapping in dynamic environments. Auton. Robots 19, 53–65 (2005)

    Article  Google Scholar 

  15. Wang, C.C.: Simultaneous localization, mapping and moving object tracking [PhD thesis]. USA: Carnegie Mellon University (2004)

  16. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, New Jersey (1997)

    MATH  Google Scholar 

  17. Oriolo, G., Ulivi, G., Vendittelli, M.: Real-time map building and navigation for autonomous robots in unknown environments. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 28(3), 316–333 (1998)

    Article  Google Scholar 

  18. Oriolo, G., Ulivi, G., Vendittelli, M.: Fuzzy maps: a new tool for mobile robot perception and planning. J. Robot. Syst. 14(3), 179–197 (1997)

    Article  Google Scholar 

  19. Huang, G.Q., Rad, A.B., Wong, Y.K.: A new solution to map dynamic indoor environments. Int. J. Adv. Robot. Syst. 3(3), 119–210 (2006)

    Google Scholar 

  20. Lee, S.J., Cho, D.W., Chung, W.K., Lim, J.H., Kang, C.U.: Feature based map building using sparse sonar data. In: Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on. pp. 1648–1652, 2005

  21. Takezawa, S., Dissanayake, G.: Simultaneous localisation and mapping problems in indoor environments with stereo vision. In: Industrial Electronics Society, 2005. IECON 2005. 32nd Annual Conference of IEEE. 6–10 Nov. 2005, pp. 1896–1901 (2005)

  22. Jensfelt, P., Folkesson, J., Kragic, D., Christensen, H.: Exploiting distinguishable image features in robotic mapping and localization. In: Christensen, H.I. (ed.) 1st European Robotics Symposium (EUROS-06), Palermo, Italy, (2006), Mar

  23. Gross, H.M., Koenig, A., Mueller, S.: Omniview-based concurrent map building and localization using adaptive appearance maps. In: Systems, Man and Cybernetics, 2005 IEEE International Conference on. 10–12 Oct. 2005. vol. 4, pp. 3510–3515

  24. Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. vol. 2, pp. 2051–2058, 2001

  25. Li, X.D., Huang, X.H., Wang, M.: Robot map building from sonar and laser information using DSmT with discounting theory. Int. J. Inf. Technol. 3(2) (2006)

  26. Saphira Manual Version 6.1e. Active media Inc.; April 1998

  27. Mak, M.W., Kung, S.Y., Lin, S.H.: Expectation-maximization theory. (Sample Chapter is provided courtesy of Prentice Hall PTR. Jan 3, 2005)

  28. Dellaert, F.: The expectation maximization algorithm. GVU Center; College of Computing; Georgia Tech, GIT-GVU-02-20, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Rad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.Z., Rad, A.B., Wong, Y.K. et al. A Comparative Study of Three Mapping Methodologies. J Intell Robot Syst 49, 385–395 (2007). https://doi.org/10.1007/s10846-007-9143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9143-z

Keywords

Navigation