Skip to main content
Log in

Design and Stability Analysis of Fuzzy Model-based Predictive Control – A Case Study

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In the paper a fuzzy model based predictive control algorithm is presented. The proposed algorithm is developed in the state space and is given in analytical form, which is an advantage in comparison with optimisation based control schemes. Fuzzy model-based predictive control is potentially interesting in the case of batch reactors, heat-exchangers, furnaces and all the processes with strong nonlinear dynamics and high transport delays. In our case it is implemented to a continuous stirred-tank simulated reactor and compared to optimal PI control. Some stability and design issues of fuzzy model-based predictive control are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abonyi, J., Nagy, L., Szeifert, F.: Fuzzy model-based predictive control by instantaneous linearization. Fuzzy Sets Syst. 120(1), 109–122 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andone, D., Hossu, A.: Predictive control based on fuzzy model for steam generator. In: Proceedings ot the IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1245–1250 (2004)

  3. Bequette, B.W.: Nonlinear control of chemical processes: a review. Ind. Eng. Chem. Res. 30, 1391–1413 (1991)

    Article  Google Scholar 

  4. Clarke, D.W., Mohtadi, C., Tuffs, P.S.: Generalized predictive control – parts 1 and 2. Automatica 24, 137–160 (1987)

    Article  Google Scholar 

  5. Cutler, C.R., Ramaker, B.L.: Dynamic Matrix Control – A Computer Control Algorithm. ACC, San Francisco (1980)

    Google Scholar 

  6. De Keyser, R.m.C, Van de Valde, P.G.A., Dumortier, F.A.G.: A Comparative study of self-adaptive long-range predictive control methods. Automatica 24(2), 149–163 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Doyle, F.J., Ogunnaike, T.A., Pearson, R.K.: Nonlinear model-based control using second-order volterra models. Automatica 31, 697–714 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Figueroa, J.L.: Piecewise linear models in model predictive control. Lat. Am. Appl. Res. 31(4), 309–315 (2001)

    Google Scholar 

  9. Goldberg, R.R.: Methods of Real Analysis. Wiley, New York (1976)

    MATH  Google Scholar 

  10. Henson, M.A., Seborg, D.E.: Input–output linerization of general processes. AIChE J. 36, 1753 (1990)

    Article  Google Scholar 

  11. Henson, M.A.: Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng. 23, 187–202 (1998)

    Article  Google Scholar 

  12. Kim, J.-H., Huh, U.-Y.: Fuzzy model based predictive control. In: Proceedings of the IEEE International Conference on Fuzzy Systems, vol. 1, pp. 405–409 (1998)

  13. Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43(11), 1329–1333 (1994)

    Article  MATH  Google Scholar 

  14. Leith, D.J., Leithead, W.E.: Gain-scheduled and nonlinear systems: dynamics analysis by velocity-based linearization families. Int. J. Control 70(2), 289–317 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leith, D.J., Leithead, W.E.: Analyitical framework for blended model systems using local linear models. Int. J. Control 72(7–8), 605–619 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, N., Li, S., Xi, Y.: Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study. Inf. Sci. Inf. Comput. Sci. 165(3–4), 247–263 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Lin, C.-H.: Siso nonlinear system identification using a fuzzy-neural hybrid system. Int. J. Neural Syst. 8(3), 325–337 (1997)

    Article  Google Scholar 

  18. Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, Upper Saddle River, NJ (1999)

    Google Scholar 

  19. Morningred, J.D., Paden, B.E., Mellichamp, D.A.: An adaptive nonlinear predictive controller. Chem. Eng. Sci. 47, 755–762 (1992)

    Article  Google Scholar 

  20. Padin, M.S., Figueroa, J.L.: Use of CPWL approximations in the design of a numerical nonlinear regulator. IEEE Trans. Automat. Contr. 45(6), 1175–1180 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Richalet J., Rault, A., Testud, J.L., Papon, J.: Model predictive heuristic control: applications to industrial processes. Automatica 14, 413–428 (1978)

    Article  Google Scholar 

  22. Richalet, J.: Industrial application of model based predictive control. Automatica 29(5), 1251–1274, (1993)

    Article  MathSciNet  Google Scholar 

  23. Roubos, J.A., Mollov, S., Babuska, R., Verbruggen, H.B.: Fuzzy model-based predictive control using Takagi–Sugeno models. Int. J. Approx. Reason. 22(1–2), 3–30 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sun, H.-R., Han, P., Jiao, S.-M.: A predictive control strategy based on fuzzy system. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, pp. 549–552 (2004)

  25. Škrjanc, I., Matko, D.: Predictive functional control based on fuzzy model for heat-exchanger pilot plant. IEEE Trans. Fuzzy Syst. 8(6), 705–712 (2000)

    Article  Google Scholar 

  26. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    MATH  Google Scholar 

  27. Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4(1), 1–13 (1996)

    Article  Google Scholar 

  28. Wang, L.-X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  29. Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)

    Article  Google Scholar 

  30. Ydstie, B.E.: Extended Horizon Adaptive Control. IFAC World Congress, Budapest (1985)

    Google Scholar 

  31. Ying, H.G.: Necessary conditions for some typical fuzzy systems as universal approximators. Automatica 33, 1333–1338 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sašo Blažič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blažič, S., Škrjanc, I. Design and Stability Analysis of Fuzzy Model-based Predictive Control – A Case Study. J Intell Robot Syst 49, 279–292 (2007). https://doi.org/10.1007/s10846-007-9147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-007-9147-8

Keywords

Navigation