Abstract
A general method for computing minimum cost trajectory planning for industrial robot manipulators is presented. The aim is minimization of a cost function with constraints namely joint positions, velocities, jerks and torques by considering dynamic equations of motion. A clamped cubic spline curve is used to represent the trajectory. This is a non-linear constrained optimization problem with five objective functions, 30 constraints and 144 variables. The cost function is a weighted balance of transfer time, mean average of actuators efforts and power, singularity avoidance, joint jerks and joint accelerations. The problem is solved by two evolutionary techniques such as Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and Differential Evolution (DE). Numerical applications for a six link robotic manipulator – STANFORD robot (pick and place operation) and a two link planar manipulator (motion in the presence of obstacles) are illustrated. The results obtained from the Proposed techniques (NSGA-II and DE) are compared for different values of weighting coefficients. The influences of the algorithm parameters and weight factors on algorithm performance are analyzed. The DE algorithm converges quickly than NSGA-II. Also DE algorithm gives better results than NSGA-II in majority of cases. A comprehensive user-friendly general-purpose software package has been developed using VC++ to obtain the optimal solutions of any complex problem using DE algorithm.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Saramago, S.F.P., Steffen, V. Jr.: Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system. Mech. Mach. Theory. 33, (7), 883–894 (1998)
Saramago, S.F.P., Steffen, V. Jr.: Dynamic optimization for the trajectory planning of robot manipulators in the presence of obstacles. J. Brazilian Soc. Mech. Sci. 21, (3), 1–17 (1999)
Saramago, S.F.P., Steffen, V. Jr.: Optimal trajectory planning of robot manipulators in the presence of moving obstacles. Mech. Mach. Theory. 35, (8), 1079–1094 (2000)
Saramago, S.F.P., Steffen, V.: Trajectory modeling of robot manipulators in the presence of obstacles. J. Optim. Theory Appl. 110, (1), 17–34 (2001)
Saramago, S.F.P., Ceccareli, M.: An optimum robot path planning with payload constraints. Robotica. 20, 395–404 (2002)
Chettibi, T., Lehtihet, H.E., Haddad, M., Hanchi, S.: Minimum cost trajectory planning for industrial robots. Eur. J. Mech. A, Solids. 23, 703–715 (2004)
Aurelio, P.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 47, (1), 140–149 (2000)
Gasparetto, A., Zanotto, V.: A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory. 42, (4), 455–471 (2007)
Elnagar, A., Hussein, A.: On optimal constrained trajectory planning in 3D environments. Robot. Auton. Syst. 33, (4), 195–206 (2000)
Lloyd, J.E., Vincent, H.: Singularity-robust trajectory generation. Int. J. Rob. Res. 20, (1), 38–56 (2001)
Chih-Jer, L.: Motion planning of redundant robots by perturbation method. Mechatronics. 14, 281–297 (2004)
Ata, A.A., Myo, R.T.: Optimal point-to-point trajectory tracking of redundant manipulators using generalized pattern search. Int. J. Adv. Rob. Syst. 2, 239–244 (2005)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist ultiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, (2), 182–197 (2002)
Price, K., Storn, R.: Differential evolution – A simple evolution strategy for fast optimization. Dr. Dobb’s J. 22, (4), 18–24, 78 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saravanan, R., Ramabalan, S. Evolutionary Minimum Cost Trajectory Planning for Industrial Robots. J Intell Robot Syst 52, 45–77 (2008). https://doi.org/10.1007/s10846-008-9202-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-008-9202-0