Skip to main content

Advertisement

Log in

Robot Navigation by Waypoints

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we propose a novel waypoint-based robot navigation method that combines reactive and deliberative actions. The approach uses reactive exploration to generate waypoints that can then be used by a deliberative system to plan future movements through the same environment. The waypoints are used largely to provide the interface between reactive and deliberative navigation and a range of methods could be used for either type of navigation. In the current work, an incremental decision tree method is used to navigate the robot reactively from the specified initial position to its destination avoiding obstacles in its path and a genetic algorithm method is used to perform the deliberative navigation. The new method is shown to have a number of practical advantages. Firstly, in contrast with many deliberative approaches, complete knowledge of the environment is not required, nor is it necessary to make assumptions regarding the geometry of obstacles. Secondly, the presence of a reactive navigator means it is always possible to continue directed movements in unknown or changing environments or when time constraints become particularly demanding. Thirdly, the use of waypoints allows escape from certain obstacle configurations that would normally trap robots navigated under the control of purely reactive methods. In addition, the results presented in this paper from a number of realistic simulated environments show that the adoption of waypoints significantly reduces the time to calculate a deliberative path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguirre, E., González, A.: A fuzzy perceptual model for ultrasound sensors applied to intelligent navigation of mobile robots. Appl. Intell. 19(3), 171–187 (2003)

    Article  Google Scholar 

  2. Aha, D.A. (ed.): Lazy Learning. Kluwer, Boston (1997)

  3. Arkin, R.C.: Navigational path planning for a vision-based mobile robot. Robotica 7, 49–63 (1989)

    Article  Google Scholar 

  4. Ashlock, D.A., Manikas, T.W., Ashenayi, K.: Evolving a diverse collection of robot path planning problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1837–1844. Vancouver, Canada, 16–21 Jul 2006

  5. Autonomous mobile robotics toolbox. Dept. Control, Measurement and Instrumentation, Brno University of Technology, Czech Republic. Http://wes.feec.vutbr.cz/UAMT/robotics/simulations/amrt. Cited 21 July 2006 (2006)

  6. Buyurgan, N., et al.: Real-time routing selection for automated guided vehicles in a flexible manufacturing system. J. Manuf. Tech. Manage. 18(2), 169–181 (2007)

    Article  Google Scholar 

  7. Davidor, Y.: Genetic algorithms and robotics: a heuristic strategy for optimization. In: Robotics and Automated Systems, vol. 1. World Scientific, Singapore, 1991

  8. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269 – 271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elshamli, A., Abdullah, H.A., Areibi, S. 2004. Genetic algorithm for dynamic path planning. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering, pp. 677–680. Niagara Fall, Ontario, Canada, 2–5 May 2004

  10. Ghaffari, M., et al.: Design of an unmanned ground vehicle, bearcat III, theory and practice. J. Robot. Syst. 21(9), 471–480 (2004)

    Article  Google Scholar 

  11. Hagras, H., Callaghan, V., Colley, M.: Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environment based on a novel online fuzzy-genetic system. Fuzzy Sets Syst. 141(1), 107–160 (2004)

    Article  MathSciNet  Google Scholar 

  12. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum-cost path. IEEE Trans. Syst. Sci. Cybern. SSC-4(2), 100–107 (1968)

    Article  Google Scholar 

  13. Kumon, E.M., et al.: Autopilot system for kiteplane. IEEE Trans. Mechatronics 11(5), 615–624 (2006)

    Article  Google Scholar 

  14. Latombe, J.C.: Robot Motion Planning. Kluwer, Boston (1991)

    Google Scholar 

  15. Leon, J.A.F., Tosini, M., Acosta, G.G.: Evolutionary reactive behavior for mobile robot navigation. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 532–537. Singapore, December 2004

  16. Li, W., Christensen, H.I., Oreback, A., Chen, D.: An architecture for indoor navigation. In: the 2004 IEEE Conference on Robotics and Automation, vol. 2, pp. 1783–1788. New Orleans, USA, April 2004

  17. Lin, H., Xiao, J., Michalewicz, Z.: Evolutionary navigator for a mobile robot. In: the 1994 IEEE Conference on Robotics and Automation, vol. 3, pp. 2199–2204. San Diego, USA, May 1994

  18. Liu, J., Hu, H., Gu, D.: A layered control architecture for autonomous robotic fish. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp. 312–317. Beijing, China, 9–13 October 2006

  19. Lozano-Perez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM. 22(10), 560–570 (1979)

    Article  Google Scholar 

  20. Maalouf, E., Saad, M., Saliah, H.: A higher level path tracking controller for a four-wheel differentially steered mobile robot. Robot. Auton. Syst. 54(1), 23 – 33 (2005)

    Article  Google Scholar 

  21. Mahfoud, S. W.: Niching Methods for Genetic Algorithms, Ph. D. Thesis, University of Illinois at Urbana-Champaign (1995)

  22. Malhotra, R., Sarkar, A.: Development of a fuzzy logic based mobile robot for dynamic obstacle avoidance and goal acquisition in an unstructured environment. In: Proceedings of the International Conference on Advanced Intelligent Mechatronics, pp. 1198–1203. Monterey, California, USA, 24–28 July 2005

  23. Mali, A.D.: On the behavior-based architectures of autonomous agents. IEEE Trans. Syst. Man. Cybern. C. 32(3), 231–242 (2002) August

    Article  Google Scholar 

  24. Martinez-Alfaro, H., Gomez-Garcia, S.: Mobile robot path planning and tracking using simulated annealing and fuzzy logic control. Expert Syst. 15(3–4), 421–429 (1998)

    Google Scholar 

  25. Matlab. http://www.mathworks.com. Cited 21 July 2006 (2006)

  26. Mulvaney, D.J., et al.: Real-time machine learning in embedded software and hardware platforms. In: Workshop on Automatic Learning and Real-Time, pp. 65–78. Siegen, Germany, September 2005

  27. Muñoz-Salinas, R., et al.: A multi-agent system architecture for mobile robot navigation based on fuzzy and visual behavior. Robotica 23(6), 689–699 (2005)

    Article  Google Scholar 

  28. Murphy, R.R.: Introduction to AI Robotics. MIT Press, Cambridge, MA, USA (2000)

    Google Scholar 

  29. Na, Y.K., Oh, S.Y.: Hybrid control for autonomous mobile robot navigation using neural network based behavior modules and environment classification. Auton. Robot. 15(2), 193–206 (2003)

    Article  Google Scholar 

  30. Nearchou, A.C.: Path planning of a mobile robot using genetic heuristics. Robotica 16, 575–588 (1998)

    Article  Google Scholar 

  31. Nefti, S., et al.: Intelligent adaptive mobile robot navigation. J. Intell. Robot. Syst. 30(4), 311–329 (2001)

    Article  MATH  Google Scholar 

  32. O’Dunlaing, C., Yap, C.K.: A retraction method for planning the motion of a disc. J. Algorithms 6, 104–111 (1982)

    Article  MathSciNet  Google Scholar 

  33. Parasuraman, R., et al.: A flexible delegation-type interface enhances system performance in human supervision of multiple robots: empirical studies with RoboFlag. IEEE Trans. Syst. Man. Cybern. A. 35(4), 481–493 (2005)

    Article  Google Scholar 

  34. Patnaik, S., Karibasappa, K.: Motion planning of an intelligent robot using GA motivated temporal associative memory. Appl. Artif. Intell. 19(5), 515–534 (2005)

    Article  Google Scholar 

  35. Payton, D.W., Rosenblatt, J.K., Keirsey, D.M.: Grid-based mapping for autonomous mobile robot. Robot. Auton. Syst. 11(1), 13–21 (1993)

    Article  Google Scholar 

  36. Quinlan, J.R.: Learning efficient classification procedures and their application to chess endgames. In: Michalski, R.S., Carbonell, J., Mitchell, T.M. (eds.) Machine Learning: An Artificial Intelligence Approach, vol vol. 1, p. 463. –. 482. Tioga Press, Palo Alto, CA, USA (1983)

    Google Scholar 

  37. Rajapakse, A., Furuta, K., Kondo, S.: Evolutionary learning of fuzzy logic controllers and their adaptation through perpetual evolution. IEEE Trans. Fuzzy Syst. 10(3), 309–321 (2002)

    Article  Google Scholar 

  38. Santos, V.M., Castro, J.P., Ribeiro, M.I.: Nested-loop architecture for mobile robot navigation. Int. J. Robot. Res. 19(12), 1218–1235 (2000)

    Article  Google Scholar 

  39. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE Trans. Evol. Comput. 2(3), 97–106 (1998)

    Article  Google Scholar 

  40. Shah-Hamzei, G.H., Mulvaney, D.J..: Intelligent process control using fuzzy ITI. Neural Comput. Appl. 9(1), 12–18 (2000)

    Article  Google Scholar 

  41. Sillitoe, I.P.W., et al.: Experiments in robust bistatic sonar object classification for local environment mapping. In: Proceedings of the 2001 IEEE Conference on Robotics and Automation, vol. 2, pp. 2147–2152. IEEE, Seoul, Korea, May 2001

  42. Swere, E. Mulvaney, D.J., Sillitoe, I.P.W.: Efficient incremental decision tree generation for embedded applications. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 2, pp. 1100–1105. IEEE, Singapore, December 2004

  43. Trojanowski, K., Michalewicz, Z., Xiao, J.: Adding memory to the evolutionary planner/navigator. In: IEEE Conference on Evolutionary Computation, pp. 483–487. Indianapolis, USA, April 1997

  44. Utgoff, P.E.: ID5: an incremental ID3. In: the 5th International Conference on Machine Learning, pp. 107–120. San Francisco, USA, 1988

  45. Utgoff, P.E.: Improved training via incremental learning. In: the 6th International Workshop on Machine Learning, pp. 362–365. Morgan Kaufmann, 1989

  46. Utgoff, P.E., Berkman, N.C., Clouse, J.A.: Decision tree induction based on efficient tree restructuring. Mach. Learn. 29, 5 – 44 (1997)

    Article  MATH  Google Scholar 

  47. Vaughan, R.T., et al.: Lost: localization-space trails for robot teams. IEEE Trans. Robot. Auto. 18(5), 796–812 (2002)

    Article  Google Scholar 

  48. Wang, Y., Mulvaney D.J., Sillitoe, I.P.W.: Genetic-based mobile robot path planning using vertex heuristics. In: Proceedings of the 2006 IEEE International Conferences on Cybernetics and Intelligent Systems, pp. 463–468. IEEE, Bangkok, Thailand, June 2006

  49. Xiao, J., et al.: Adaptive evolutionary planner/navigator for mobile robots. IEEE Trans. Evol. Comput. 1, 18–28 (1997)

    Article  Google Scholar 

  50. Xiao, J., Michalewicz, Z., Zhang, L.: Evolutionary planner/navigator: operator performance and self-tuning. In: IEEE Conference on Evolutionary Computation, pp. 366–371. Nagoya, Japan, May 1996

  51. Yang, X., Moallem, M., Patel, R.V.: A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation. IEEE Trans. Syst. Man. Cybern. B. 35(6), 1214–1224 (2005)

    Article  Google Scholar 

  52. Zalama, E., et al.: Adaptive behavior navigation of a mobile robot. IEEE Trans. Syst. Man. Cybern. A. 32(1), 160–169 (2002)

    Article  Google Scholar 

  53. Zheng, C., et al.: Evolutionary route planner for unmanned air vehicles. IEEE Trans. Robot. 21(4), 609–620 (2005)

    Article  Google Scholar 

  54. Zheng, C., Ding, M., Zhou, C.: Real-time route planning for unmanned air vehicle with an evolutionary algorithm. Int. J. Pattern. Recogn. Artif. Intell. 17(1), 63–81 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Mulvaney, D., Sillitoe, I. et al. Robot Navigation by Waypoints. J Intell Robot Syst 52, 175–207 (2008). https://doi.org/10.1007/s10846-008-9209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9209-6

Keywords

Navigation