Skip to main content
Log in

Coordinated Collective Motion of Groups of Autonomous Mobile Robots with Directed Interconnected Topology

  • Unmanned Systems Paper
  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Coordinated collective motion of groups of autonomous mobile robots is studied. A qualitative analysis for the collective dynamics of multiple autonomous robots with directed interconnected topology using nearest neighbor rules is given. A necessary and sufficient graphical condition is proposed to guarantee that the headings of all robots converge to the same heading. The graph having a globally reachable node plays a crucial role in convergence analysis. Furthermore, we show that the globally reachable node having no neighbors serves as a group leader as a special case

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Reference

  1. Vicsek, T., Czirok, A., Benjacob, E., Cohen, I., Shochet, O.: Novel type of phase-transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  Google Scholar 

  2. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioural model. Computer Graphics (ACM) 21, 25–34 (1987)

    Article  Google Scholar 

  3. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Contr. 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  4. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Contr. 50, 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  5. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge, New York (1985)

    MATH  Google Scholar 

  6. Godsil, C.D., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    MATH  Google Scholar 

  7. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Contr. 50, 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  8. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49, 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  9. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control. Lett. 53, 65–78 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. Automat. Contr. 49, 622–629 (2004)

    Article  MathSciNet  Google Scholar 

  11. Hatano, Y., Mesbahi, M.: Agreement over random networks. IEEE Trans. Automat. Contr. 50, 1867–1872 (2005)

    Article  MathSciNet  Google Scholar 

  12. Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Automat. Contr. 50, 121–127 (2005)

    Article  MathSciNet  Google Scholar 

  13. Lin, Z.Y., Fancis, B., Maggiore, M.: Getting mobile autonomous robots to rendezvous. Control of Uncertain Systems: Modelling, Approximation, and Design 329, 119–137 (2006)

    Article  Google Scholar 

  14. Savkin, A.V.: Coordinated collective motion of groups of autonomous mobile robots: Analysis of Vicsek’s model. IEEE Trans. Automat. Contr. 49, 981–983 (2004)

    Article  MathSciNet  Google Scholar 

  15. Subramanian, R., Scherson, I.D.: An analysis of diffusive load balancing. In: Proceedings of sixth ACM SPAA. 220–225 (1994)

  16. Ghosh, B., Leighton, F.T., Maggs, B.M., Muthukrishnan, S., Plaxton, C.G., Rajaraman, R., et al.: Tight analyses of two local load balancing algorithms. SIAM J. Comput. 29, (1), 29–64 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ghosh, B., Muthukrishnan, S.: Dynamic load balancing by random matchings. J. Comput. Syst. Sci. 53, 357–370 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kashyap, A., Basar, T., Srikant, R.: Quantized consensus. Automatica 43, 1192–1203 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Carli, R., Fagnani, F., Speranzon, A., Zampieri, S.: Communication constraints in coordinated consensus problems. In: Proceedings of American control conference 4189–4194 (2006)

  20. Bang-Jensen, J., Gutin, G.: Digraphs: theory, algorithms, and applications. Springer, London, Hong Kong (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yu.

Additional information

Supported in part by National Natural Science Foundation of China under the grant 60604001 and 60674081, Natural Science Research Project of Hubei Provincial Department of Education under the grant D20081306 and Scientific Innovation Team Project of Hubei Provincial College under the grant T200809.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Wang, Y. Coordinated Collective Motion of Groups of Autonomous Mobile Robots with Directed Interconnected Topology. J Intell Robot Syst 53, 87–98 (2008). https://doi.org/10.1007/s10846-008-9230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9230-9

Keywords