Skip to main content
Log in

Distributed Constraint Force Approach for Coordination of Multiple Mobile Robots

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

A new approach to coordination of multiple mobile robots is presented in this paper. The approach relies on the notion of constraint forces which are used in the development of the dynamics of a system of constrained particles with inertia. A familiar class of dynamic, nonholonomic robots are considered. The goal is to design a distributed coordination control algorithm for each robot in the group to achieve, and maintain, a particular formation while ensuring navigation of the group. The theory of constraint forces is used to generate a stable control algorithm for each mobile robot that will achieve, and maintain, a given formation. The advantage of the proposed method is that the formation keeping forces (constraint forces) cancel only those applied forces which act against the constraints. Another feature of the proposed distributed control algorithm is that it allows to add/remove other mobile robots into/from the formation gracefully with simple modifications of the control input. Further, the algorithm is scalable. To corroborate the theoretical approach, simulation results on a group of six robots are shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chang, D.E., Marsden, J.E.: Gyroscopic forces and collision avoidance with convex obstacles. In: Kang, M.X.W., Borges C. (eds.) New Trends in Nonlinear Dynamics and Control, and their Applications, pp. 145–160. Springer, New York (2003)

    Google Scholar 

  2. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    MATH  Google Scholar 

  5. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1953)

    Google Scholar 

  6. Lawton, J.R., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  7. Leonard, N.E., Fiorello, E.: Virtual leader, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, pp. 2968–2973. IEEE, Piscataway (2001)

    Google Scholar 

  8. Liang, Y., Lee, H.H.: Decentralized formation control and obstacle avoidance for multiple robots with nonholonomic constraints. In: Proceedings of the American Control Conference, pp. 5596–5601, Minneapolis, 14–16 June 2006

  9. Loizou, S.G., Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized feedback stabilization of multiple nonholonomic agents. In: Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, 26 April–1 May 2004

  10. Murray, R., Sastry, S.: Nonholonomic motion planning-steering using sinusoids. IEEE Trans. Automat. Control 38, 700–716 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ogren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. Automat. Control 49(8), 1292–1302 (2004)

    Article  MathSciNet  Google Scholar 

  12. Olfati-Saber, R., Murray, R.M.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: The 15th IFAC World Congress, Barcelona, 21–26 July 2002

  13. Olfati-Saber, R., Murray, R.M.: Distributed structural stabilization and tracking for formations of dynamic multi-agents. In: Proceedings of the 41th IEEE Conference on Decision and Control, pp. 209–215. IEEE, Piscataway (2002)

    Google Scholar 

  14. Pomet, J.B., Thuilot, B., Bastin, G., Campion, G.: A hybrid strategy for the feedback stabilization of nonholonomic mobile robots. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 129–133. IEEE, Piscataway (1992)

    Chapter  Google Scholar 

  15. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential function. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)

    Article  Google Scholar 

  16. Stipanovic, D.M., Hokayem, P.F., Spong, M.W., Siljak, D.D.: Cooperative avoidance control for multiagent systems. ASME J. Dyn. Syst. Meas. Control 129, 699–707 (2007)

    Article  Google Scholar 

  17. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in teams of nonholonomic agents. In: Morse, N.L.S., Kumar, V. (eds.) Cooperative Control, pp. 229–239. Springer, New York (2004)

    Google Scholar 

  18. Tanner, H.G., Kyriakopoulos, K.J.: Discontinuous backstepping for stabilization of nonholonomic mobile robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 3948–3953. IEEE, Piscataway (2002)

    Google Scholar 

  19. Udwadia, F., Kalaba, R.E.: Analytical Dynamics, A New Approach. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  20. Witkin, A., Gleicher, M., Welch, W.: Interactive dynamics. Computer Graph. 24(2), 11–21 (1990)

    Article  Google Scholar 

  21. Yun, X., Yamamoto, Y.: Stability analysis of the internal dynamics of a wheeled mobile robots. J. Robot. Syst. 14(10), 697–709 (1997)

    Article  MATH  Google Scholar 

  22. Zou, Y., Pagilla, P.R., Misawa, E.A.: Formation of a group of vehicles with full information using constraint forces. ASME J. Dyn. Syst. Meas. Control 129, 654–661 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar R. Pagilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Y., Pagilla, P.R. Distributed Constraint Force Approach for Coordination of Multiple Mobile Robots. J Intell Robot Syst 56, 5–21 (2009). https://doi.org/10.1007/s10846-009-9314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9314-1

Keywords

Navigation