Skip to main content
Log in

Neuro-Adaptive Output Feedback Control for a Class of Nonlinear Non-Minimum Phase Systems

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents an adaptive output-feedback control method for non-affine nonlinear non-minimum phase systems that have partially known Lipschitz continuous functions in their arguments. The proposed controller is comprised of a linear, a neuro-adaptive and an adaptive robustifying control term. The adaptation law for the neural network weights is obtained using the Lyapunov’s direct method. One of the main advantageous of the proposed method is that the control law does not depend on the state estimation. This task is accomplished by introducing a strictly positive-real augmented error dynamic and using the Leftshetz–Kalman–Yakobuvich lemma. The ultimate boundedness of the error signals will be shown analytically using the extension of Lyapunov theory. The effectiveness of the proposed scheme will be shown in simulations for the benchmark problem Translational Oscillator/Rotational Actuator (TORA) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kazantizis, N., Niemiec, M.: A new approach to zero dynamic assignment problem for nonlinear discrete-time systems using functional equations. Syst. Control Lett. 51(3–4), 311–324 (2007)

    Google Scholar 

  2. Talebi, H.A., Patel, R.V.: A neural network controller for a class of nonlinear non-minimum phase systems with application to a flexible-link manipulator. Int. J. Dyn. Syst. Meas. Contr. 127, 289–294 (2005)

    Article  Google Scholar 

  3. Patel, R.V., Misra, P.: Transmission zero assignment in linear multivariable systems Part 1: square system. In: Proc. 37th Conf. Decision and Contr., Florida (1998)

  4. Norrlof, M., Markusson, O.: Iterative learning control of nonlinear non-minimum phase system and its application to system and model inversion. In: Proc. 40th Conf. Decision and Contr., Florida (2001)

  5. Norrlof, M., Gunnarsson, S.: On the design of ILC algorithms using optimization. Automatica 37(12), 2011–2016 (2001)

    Article  Google Scholar 

  6. Sogo, T., Kinoshita K., Adachi, N.: Iterative learning control using adjoint system for nonlinear non-minimum phase systems. In: Proc. 39th Conf. Decision and Contr., Australia (2000)

  7. Yang, X.-G., Spurgeon, S.K., Edwards, C.: Decentralised sliding mode control for non-minimum phase interconnected system based on reduced-order compensator. Automatica 42(10), 1821–1828 (2006)

    Article  Google Scholar 

  8. Lee, C.H.: Stabilization of nonlinear non-minimum phase system: adaptive parallel approach using recurrent fuzzy neural network. IEEE Trans. Syst. Man Cybern., Part B 34(2), 1075–1088 (2004)

    Article  Google Scholar 

  9. Chen, S.C., Chen, W.L.: Output regulation of nonlinear uncertain system with non-minimum phase via enhances RBFN controller. IEEE Trans. Syst. Man Cybern., Part A 33(2), 265–270 (2003)

    Article  Google Scholar 

  10. Hoseini, S.M., Farrokhi, M.: Adaptive stabilization of non-minimum phase nonlinear systems using neural networks. In: Proc. IFAC Workshop on Adaptation and Learning in Control and Signal Processing. Saint Petersburg, Russia (2007)

    Google Scholar 

  11. Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1995)

    MATH  Google Scholar 

  12. Marino, R., Tomei, P.: Nonlinear Adaptive Design: Geometric, Adaptive and Robust. Prentice-Hall, London (1995)

    MATH  Google Scholar 

  13. Isidori, A.: A tool for semiglobal stabilization of uncertain non-minimum phase nonlinear systems via output feedback. IEEE Trans. Automat. Contr. 45(10), 1817–1827 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karagiannis, D., Jiang, Z.P., Ortega, R., Astolfi, A.: Output-feedback stabilization of a class of uncertain non-minimum phase nonlinear systems. Automatica 41(9), 1609–1615 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang, N., Xu, W., Chen, F.: Adaptive global output feedback stabilization of some non-minimum phase nonlinear uncertain system. IET Control Theory Appl. 2(2), 117–125 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ding, Z.: Semi global stabilization of a class of non-minimum phase nonlinear output-feedback system. IEEProc. Control Theory Appl. 152(4), 460–464 (2005)

    Article  Google Scholar 

  17. Yang, X.-G., Edwards, C., Spurgeon, S.K.: Output feedback stabilization of a class of uncertain non-minimum phase system with nonlinear disturbance. Int. J. Control 77(15), 1353–1361 (2004)

    Article  Google Scholar 

  18. Hovakimyan, N., Yang, B.J., Calise, A.J.: Adaptive output feedback control methodology applicable to non-minimum phase nonlinear systems. Automatica 42(4), 513–522 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ge, S.S., Zhang, T.: Neural network control of non-affine nonlinear system with zero dynamics by state and output feedback. IEEE Trans. Neural Netw. 14(4), 900–918 (2003)

    Article  Google Scholar 

  20. Lewis, F., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7(2), 388–399 (1996)

    Article  Google Scholar 

  21. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Boston (1994)

    Google Scholar 

  22. Narendra, K.S., Annaswamy, A.M.: Stable Adaptive System. Prentice-Hall, London (1990)

    Google Scholar 

  23. Hovakimyan, N., Nardi, F., Calise, A.J.: A novel error observer based adaptive output feedback approach for control of uncertain systems. IEEE Trans. Automat. Contr. 47(8), 1310–1314 (2002)

    Article  MathSciNet  Google Scholar 

  24. Lavertsky, E., Calise, A.J., Hovakimyan, N.: Upper bounds for approximation of continuous-time dynamics using delayed outputs and feedforward neural networks. IEEE Trans. Automat. Contr. 48(9), 1606–1610 (2003)

    Article  Google Scholar 

  25. Ioannou, P.A., Kokotovic, P.V.: Adaptive Systems with Reduced Models. Springer, New York (1983)

    Book  MATH  Google Scholar 

  26. Lewis, F., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor and Francis, London (1999)

    Google Scholar 

  27. Lancaster, P.: Explicit solutions of linear matrix equations. SIAM Rev. 12, 544–566 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farrokhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoseini, S.M., Farrokhi, M. Neuro-Adaptive Output Feedback Control for a Class of Nonlinear Non-Minimum Phase Systems. J Intell Robot Syst 56, 487 (2009). https://doi.org/10.1007/s10846-009-9325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-009-9325-y

Keywords

Navigation