Skip to main content
Log in

A Study on Lateral Control of Autonomous Vehicles via Fired Fuzzy Rules Chromosome Encoding Scheme

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel Fired Rules Chromosomes (FRC) encoding scheme for a fuzzy controller tuned by Genetic Algorithms (GA). The proposed method improves the optimization speed through the reduction of the search space. In addition, an improvement in convergence is demonstrated. The fuzzy controller optimized by the FRC scheme is employed to maintain the lateral position of an autonomous vehicle. The robustness of the controller to parameter variation is studied by Monte-Carlo analysis. Simulation and experimental studies demonstrate the performance of the lateral controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chan, P.T., Xie, W.F., Rad, A.B.: Tuning of fuzzy controller for an open-loop unstable system: a genetic approach. Fuzzy Sets and Syst. 111(1), 137–152 (2000)

    Article  MathSciNet  Google Scholar 

  2. Chang, W., Park, J.B., Joo, Y.H.: GA-based intelligent digital redesign of fuzzy-model-based controllers. IEEE Trans. Fuzzy Syst. 11(1), 35–44 (2003)

    Article  Google Scholar 

  3. Casillas, J., Cordon, O., del Jesus, M.J., Herrera, F.: Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Trans. Fuzzy Syst. 13(1), 13–29 (2005)

    Article  Google Scholar 

  4. Juang, C.F.: Combination of online clustering and Q-value based GA for reinforcement fuzzy system design. IEEE Trans. Fuzzy Syst. 13(3), 289–302 (2005)

    Article  Google Scholar 

  5. Karr, C.: Genetic algorithms for fuzzy logic controllers. AI Expert 6(1), 26–33 (1991)

    Google Scholar 

  6. Teng, Y.W., Wang, W.J.: Constructing a user-friendly GA-based fuzzy system directly from numerical data. IEEE Trans. Syst. Man Cybern. Part B. Cybernetics 34(3), 2060–2070 (2004)

    Article  Google Scholar 

  7. Wang, W.Y., Cheng, C.Y., Leu, Y.G.: An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B. Cybernetics 34(1), 334–345 (2004)

    Article  Google Scholar 

  8. Herrera, F., Verdegay, J.L.: Genetic Algorithms and Soft Computing. Heidelberg, Heidelberg (1996)

  9. Sharma, S.K., Irwin, G.W.: Fuzzy coding of genetic algorithms. IEEE Trans. Evol. Comput. 7(2), 344–355 (2003)

    Article  Google Scholar 

  10. Fu, M., Ruan, J, Ding, H.: Study on virtual path track control for intelligent vehicle. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems on 3–6 October 2004, pp. 173–178 (2004)

  11. Fu, M., Ruan, J., Li, Y.: A new kind of robust design method of intelligent vehicle lateral control. In: Intelligent Control and Automation, WCICA 2004. Fifth World Congress, 15–19 June 2004, vol. 3, pp. 2438–2442 (2004)

  12. Cai, L., Rad, A.B., Chan, W.L., Cai, K.Y.: A robust fuzzy PD controller for automatic steering control of autonomous vehicles. In: Proceedings of IEEE International Conference on Fuzzy Systems, 25–28 May 2003, vol. 1, pp. 549–554 (2003)

  13. Chan, P.T., Tsang, K.M., Rad, A.B.: Optimisation of stable rule table for fuzzy controller using genetic algorithms. Control Intell Syst 31(3), 133–137 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Guldner, J., Sienel, W., Tan, H.S., Ackermann, J., Patwardhan, S., Bünte, T.: Robust automatic steering control for look-down reference systems with front and rear sensors. IEEE Trans. Control Syst. Technol. 7(1), 2–11 (1999)

    Article  Google Scholar 

  15. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision process. IEEE Trans. Syst. Man Cybern. 15(3), 15–30 (1979)

    Google Scholar 

  16. Davis, L. (ed.): Handbook of Genetic Algorithms. Wan Nestand, Reinhold (1991)

    Google Scholar 

  17. Goldberg, D.: Genetic Algorithms in Search, Optimisation, and Machine Learning. Addison-Wesley, Upper Saddle River (1989)

    Google Scholar 

  18. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall, Upper Saddle River (1997)

    MATH  Google Scholar 

  19. Guldner, J., Tan, H.S., Patwardhan, S.: On fundamental issues of vehicle steering control for highway automation. California PATH working paper UCB-ITS-PWP-97–11 (1997)

  20. Peng, H., Tomizuka, M.: Vehicle lateral control for highway automation. In: Proc. American Control Conf., pp. 788–794. San Diego, CA, USA (1990)

  21. Ho, M.L., Rad, A.B., Chan, P.T.: Design of a prototype semiautonomous vehicle. Control Syst. Mag. 24(3), 88–91 (2004)

    Article  Google Scholar 

  22. Cai, L.: Novel Algorithms for Longitudinal and Lateral Control for Application in Autonomous Vehicles. Thesis (M.Phil.), The Hong Kong Polytechnic University, Department of Electrical Engineering (2003)

  23. Ray, L.R., Stengel, R.F.: A Monte Carlo approach to the analysis of control system robustness. Automatica 29, 229–236 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Rad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, P.T., Rad, A.B. & Ho, M.L. A Study on Lateral Control of Autonomous Vehicles via Fired Fuzzy Rules Chromosome Encoding Scheme. J Intell Robot Syst 56, 441 (2009). https://doi.org/10.1007/s10846-009-9330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-009-9330-1

Keywords

Navigation