Skip to main content
Log in

Backstepping Approach for Controlling a Quadrotor Using Lagrange Form Dynamics

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The dynamics of a quadrotor are a simplified form of helicopter dynamics that exhibit the same basic problems of underactuation, strong coupling, multi-input/multi-output design, and unknown nonlinearities. Control design for the quadrotor is more tractable yet reveals corresponding approaches for helicopter and UAV control design. In this paper, a backstepping approach is used for quadrotor controller design. In contrast to most other approaches, we apply backstepping on the Lagrangian form of the dynamics, not the state space form. This is complicated by the fact that the Lagrangian form for the position dynamics is bilinear in the controls. We confront this problem by using an inverse kinematics solution akin to that used in robotics. In addition, two neural nets are introduced to estimate the aerodynamic components, one for aerodynamic forces and one for aerodynamic moments. The result is a controller of intuitively appealing structure having an outer kinematics loop for position control and an inner dynamics loop for attitude control. The control approach described in this paper is robust since it explicitly deals with unmodeled state-dependent disturbances and forces without needing any prior knowledge of the same. A simulation study validates the results obtained in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Koo, T.J., Sastry, S.: Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th Conference on Decision and Control. Tampa, Florida (1998)

  2. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. Wiley, New York (2003)

    Google Scholar 

  3. Castillo, P., Lozano, R., Dzul, A.: Modelling and Control of Mini Flying Machines. Springer, Berlin (2005)

    Google Scholar 

  4. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an weight augmentation high energy consumption indoor micro quadrotor. In: Proceedings of 2004 1EEElRS.J Internationel Conference on Intelligent Robots and Systems. Sendal, Japan (2004)

  5. Madani, T., Benallegue, A.: Backstepping control for a quadrotor helicopter. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China (2006)

  6. Mokhtari, A., Benallegue, A., Orlov, Y.: Exact linearization and sliding mode observer for a quadrotor unmanned aerial vehicle. Int. J. Robot. Autom. 21, 39–49 (2006). doi:10.2316/Journal.206.2006.1.206-2842

    Google Scholar 

  7. Mokhtari, A., Benallegue, A., Daachi, B.: Robust feedback linearization and GH∞ controller for a quadrotor unmanned aerial vehicle. J. Electr. Eng. 57, 20–27 (2006)

    Google Scholar 

  8. Kim, H.J., Shim, D.H., Sastry, S.: Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles. In: Proceedings of the American Control Conference. Anchorage, AK (2002)

  9. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Automat. Contr. 36, 1241–1253 (1991). doi:10.1109/9.100933

    Article  MATH  MathSciNet  Google Scholar 

  10. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Contr. Syst. Technol. 12, 510–516 (2004). doi:10.1109/TCST.2004.825052

    Article  Google Scholar 

  11. Castillo, P., Lozano, R., Dzul, A.: Stabilization of a mini rotorcraft having four rotors. IEEE Contr. Syst. Mag. 25, 45–55 (2005). doi:10.1109/MCS.2005.1550152

    Article  MathSciNet  Google Scholar 

  12. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: International Conference on Intelligent Robots and Systems, pp. 2451–2456 (2004)

  13. Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. Int. J. Robust Nonlinear Contr. 14, 1035–1059 (2005). doi:10.1002/rnc.931

    Article  MathSciNet  Google Scholar 

  14. Yang, C.D., Liu, W.H.: Nonlinear Hoo Decoupling hover control of helicopter with parameter uncertainties. In: Proceedings of the American Control Conference. Denver, Colorado (2003)

  15. Enns, R., Si, J.: Helicopter flight control design using a learning control Approach1. In: Proceedings of the 39th Conference on Decision and Control. Sydney, Australia (2000)

  16. Calise, A.J., Kim, B.S., Leitner, J., Prasad, J.V.R.: Helicopter adaptive flight control using neural networks. In: Proceedings of the 33rd Conference on Decision and Control. Lake Buena Vista, FL (1994)

  17. Johnson, E., Kannan, S.: Adaptive trajectory control for autonomous helicopters. AIAA J. Guid. Control Dyn. 28, 524–538 (2005). doi:10.2514/1.6271

    Article  Google Scholar 

  18. Farrell, J., Sharma, M., Polycarpou, M.: Backstepping-based flight control with adaptive function approximation. AIAA J. Guid. Contr. Dyn. 28, 1089–1102 (2005)

    Article  Google Scholar 

  19. Hamel, T., Mahony, R., Lozano, R., Ostrowski, J.: Dynamic modeling and configuration stabilization for an X4-flyer. In: IFAC 15th Triennial World Congress. Barcelona, Spain (2002)

  20. Mistler, V., Benallegue, A., M’Sirdi, N.K.: Exact linearization and non-interacting control of a 4 rotors helicopter via dynamic feedback. In: 10th IEEE Int. Workshop on Robot–Human Interactive Communication. Paris (2001)

  21. Bijnens, B., Chu, Q.P., Voorsluijs, G.M., Mulder, J.A.: Adaptive feedback linearization flight control for a helicopter UAV. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California (2005)

  22. Altug, E., Ostrowski, J.P., Mahony, R.: Control of a quadrotor helicopter using visual feedback. In: IEEE International Conference on Robotics and Automation. Washington, DC (2002)

  23. Cheng, M., Huzmezan, M.: A combined MBPC/2 DOF hinf controller for quad rotor unmanned air vehicle. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit. Austin, Texas, USA (2003)

  24. Cowling, I.D., Yakimenko, O.A., Whidborne, J.F., Cooke, A.K.: A prototype of an autonomous controller for a quadrotor UAV. In: Proceedings of the European Control Conference. Kos, Greece (2007)

  25. Guo, W., Horn, J.: Modeling and simulation for the development of a quad-rotor UAV capable of indoor flight. In: Modeling and Simulation Technologies Conference and Exhibit. Keystone, Colorado (2006)

  26. Mahony, R., Hamel, T., Dzul, A.: Hover control via lyapunov control for an autonomous model helicopter. In: Proceedings of the 38th Conference on Decision & Control. Phoenix, Arizona (1999)

    Google Scholar 

  27. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practices. Marcel Dekker, New York (2004)

    Google Scholar 

  28. Lewis, F., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor and Francis, London (1999)

    Google Scholar 

  29. Kim, Y.H., Lewis, F.L.: High Level Feedback Control With Neural Networks. World Scientific. River Edge, NJ (1998)

    MATH  Google Scholar 

  30. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. In: Doctor of Philosophy, Dept. of Electrical Engineering and Computer Science, p. 307. MIT (2001)

  31. Hornik, K., Stinchombe, M., White, H.: Multilayer feedforward networks are universal approximations. Neural Netw. 20, 359–366 (1989). doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  32. Lewis, F.L., Yesildirek, A., Liu, K.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7, 388–399 (1996). doi:10.1109/72.485674

    Article  Google Scholar 

  33. Fantoni, I., Zavala, A., Lozano, R.: Global stabilization of a PVTOL aircraft with bounded thrust. In: Proceedings of the 41st Conference on Decision and Control. Las Vegas, Nevada USA (2002)

  34. Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators. Macmillan, New York (1993)

  35. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)

    Google Scholar 

  36. Hogan, N.: Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Automat. Contr. 29, 681–690 (1984). doi:10.1109/TAC.1984.1103644

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Lewis, F. & Subbarao, K. Backstepping Approach for Controlling a Quadrotor Using Lagrange Form Dynamics. J Intell Robot Syst 56, 127–151 (2009). https://doi.org/10.1007/s10846-009-9331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9331-0

Keywords

Navigation