Skip to main content
Log in

Real-Time Warning System for Driver Drowsiness Detection Using Visual Information

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Traffic accidents due to human errors cause many deaths and injuries around the world. To help in reducing this fatality, in this research, a new module for Advanced Driver Assistance System (ADAS) for automatic driver drowsiness detection based on visual information and Artificial Intelligence is presented. The aim of this system is to locate, to track and to analyze the face and the eyes to compute a drowsiness index, working under varying light conditions and in real time. Examples of different images of drivers taken in a real vehicle are shown to validate the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Armingol, J.M., de la Escalera, A., Hilario, C., Collado, J., Carrasco, J., Flores, M., Pastor, J., Rodriguez, F.: IVVI: intelligent vehicle based on visual information. Robot. Auton. Syst. 55, 904–916 (2007). doi:10.1016/j.robot.2007.09.004

    Article  Google Scholar 

  2. Bergasa, L., Nuevo, J., Sotelo, M., Vazquez, M.: Real time system for monitoring driver vigilance. In: IEEE Intelligent Vehicles Symposium, Parma, 14–17 June 2004

  3. Brookshear, J.G.: Theory of Computation: Formal Languages, Automata and Complexity. Addison Wesley Iberoamericana, Reading (1993)

    Google Scholar 

  4. Brandt, T., Stemmer, R., Mertsching, B., Rakotomirainy, A.: Affordable visual driver monitoring system for fatigue and monotony. IEEE Int. Conf. Syst. Man Cybern. 7, 6451–6456 (2004)

    Google Scholar 

  5. Branzan, A., Widsten, B., Wang, T., Lan, J., Mah, J.: A computer vision-based system for real-time detection of sleep onset in fatigued drivers. In: IEEE Intelligent Vehicles Symposium, pp. 25–30 (2008)

  6. Chang, C., Lin, C.: LIBSVM: a library for support vector machine (2001). www.csie.ntu.edu.tw/~cjlin/libsvm

  7. Chen, Y.W., Kubo, K.: A robust eye detection and tracking technique using Gabor filters. In: Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IEEE, vol. 1, pp. 109–112 (2007)

  8. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  9. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional cortial filters. J. Opt. Soc. Am. 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  10. D’Orazio, T., Leo, M., Distante, A.: Eye detection in faces images for a driver vigilante system. IEEE Intelligent Vehicles Symposium University of Parma, Italy, 14–17 June (2004)

  11. Dong, W., Wu, X.: Driver fatigue detection based on the distance of eyelid. In: IEEE Int. Workshop VLSI Design & Video Tech., Suzhou, China (2005)

  12. Fletcher, L., Petersson, L., Zelinsky, A.: Driver assistance systems based on vision in and out of vehicles. In: IEEE Proceedings of Intelligent Vehicles Symposium, pp. 322–327 (2003)

  13. Gejgus, P., Sparka, M.: Face Tracking in Color Video Sequences. The Association for Computing Machinery Inc., New York (2003)

    Google Scholar 

  14. Grace, R.: Drowsy driver monitor and warning system. International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design (2001)

  15. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction: Foundations and Applications. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  16. Hagenmeyer, L.: Development of a multimodal, universal human–machine-interface for hypovigilance-management-systems. Ph.D. thesis, University of Stuttgart (2007)

  17. Horng, W., Chen, C., Chang, Y.: Driver fatigue detection based on eye tracking and dynamic template matching. In: Proceedings of the IEEE International Conference on Networking, Sensing & Control (2004)

  18. Isard, M., Blake, A.: Condensation: conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998). doi:10.1023/A:1008078328650

    Article  Google Scholar 

  19. Isard, M.A.: Visual motion analysis by probabilistic propagation of conditional density. Ph.D. thesis, Oxford University (1998)

  20. Jafar, I., Ying, H.: A new method for image contrast enhancement based on automatic specification of local histograms. IJCSNS Int. J. Computer Sci. Netw. Secur. 7(7), 1–10 (2007)

    Google Scholar 

  21. Ji, Q., Zhu, Z., Lan, P.: Real time nonintrusive monitoring and prediction of driver fatigue. IEEE Trans. Veh. Technol. 53(4), 1052–1068 (2004). doi:10.1109/TVT.2004.830974

    Article  Google Scholar 

  22. Ji, Q., Yang, X.: Real-time eye, gaze, and face pose tracking for monitoring driver vigilance. Real-Time Imaging 8, 357–377 (2002)

    Article  MATH  Google Scholar 

  23. Liu, C.: Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 572–581 (2004)

    Article  Google Scholar 

  24. Longhurst G.: Understanding Driver Visual Behaviour. Seeing Machine Pty Limited, Acton (2002)

    Google Scholar 

  25. Looney, C.G.: Pattern Recognition Using Neural Networks, Theory and Algorithms for Engineers and Scientists. Oxford University Press, Oxford (1997)

    Google Scholar 

  26. McLachlan, G.J.: The EM Algorithm and Extensions. Wiley, New York (1997)

    MATH  Google Scholar 

  27. Mujtaba I.M.: Application of Neural Networks and Other Learning Technologies in Process Engineering. Imperial College Press, London (2001)

    Book  Google Scholar 

  28. NHTSA: evaluation of techniques for ocular measurement as an index of fatigue and the basis for alertness management. Final report DOT HS 808762, National Highway Traffic Safety Administration, Virginia 22161, USA (1998)

  29. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). doi:10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  30. Parker, J.R.: Practical Computer Vision Using C. Wiley, New York (1994)

    Google Scholar 

  31. Tian, Z., Qin, H.: Real-time driver’s eye state detection. In: IEEE International Conference on Vehicular Electronics and Safety, pp. 285–289 (2005)

  32. Satake, J., Shakunaga, T.: Multiple target tracking by appearance-based condensation tracker using structure information. In: Proceedings of the 17th International Conference on Patter Recognition (ICPR’04), vol. 3, pp. 294–297 (2004)

  33. Swingler, K.: Applying Neural Networks: A Practical Guide. Academic, New York (1996)

    Google Scholar 

  34. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Conference on Computer Vision and Pattern Recognition (2001)

  35. Wu, Y., Liu, H., Zha, H.: A new method of detecting human eyelids based on deformable templates. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 604–609 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Armingol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, M.J., Armingol, J.M. & de la Escalera, A. Real-Time Warning System for Driver Drowsiness Detection Using Visual Information. J Intell Robot Syst 59, 103–125 (2010). https://doi.org/10.1007/s10846-009-9391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-009-9391-1

Keywords