Skip to main content
Log in

Fuzzy Longitudinal Controller Design and Experimentation for Adaptive Cruise Control and Stop&Go

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a fuzzy longitudinal control system with car-following speed ranging from 0 to 120 km/h, thereby achieving the main functions of both adaptive cruise control (ACC) and Stop&Go control. A fuzzy longitudinal controller is synthesized by inputting the difference of the actual relative distance and the safe distance obtained from the preceding vehicle, and the relative speed, and then outputting the pulse-width-modulation (PWM) signal to control the output forces of the vacuum boosters. With the use of the high-level controller from dSPACE, the fuzzy control law is easily and rapidly implemented using Matlab/Simulink for the experimental car, and the controller’s parameters can be changed and updated by analyzing data based on the relative distance using Lidar, the speed of the host vehicle, the opening of the throttle and the position of the braking pedal. For the sake of safe driving, experimental results are conducted by simulating the various possible car-following conditions for the ACC and Stop&Go controllers, thereby obtaining virtually relative distances and speeds to tune the controller’s parameters and ensure the safety of the controller. Several car following experiments are conducted to show that the proposed fuzzy longitudinal controller is capable of achieving the requirements of comfort and safety, and giving a satisfactory performance at high and low speed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, J.W.: Fuzzy Neural Networks based Adaptive Cruise Control. MS thesis. Department of Electrical and Control Engineering, National Chiao Tung University (2002)

  2. Blažič, S., Škrjanc, I.: Design and stability analysis of fuzzy model-based predictive control - A case study. J. Intell. Robot. Syst. 49, 279–292 (2007)

    Article  Google Scholar 

  3. Furagaki, S., Kuroda, H., Minowa, T., Kayano, M., Yoshikawa, T., Takenaga, H., Nakamura, K., Takano, K.: An adaptive cruise control using wheel torque management technique. SAE Technical Paper. no. 980606 (1998)

  4. Gerdes, J.C., Hedrick, J.K.: Vehicle speed and spacing control via coordinated throttle and brake actuation. Control Eng. Pract. 5(11), 1607–1614 (1997)

    Article  Google Scholar 

  5. Holtzmann, H., Halfmann, C., Germann, S., Würtemberger, M., Isermann, R.: Longitudinal and lateral control and supervision of autonomous intelligent vehicles. Control Eng. Pract. 5(11), 1599–1605 (1997)

    Article  Google Scholar 

  6. Huang, Y.J., Chang, S.H., Kuo, T.C.: Robust fuzzy output sliding control without the requirement of state measurement. J. Intell. Robot. Syst. 53, 169–182 (2008)

    Article  Google Scholar 

  7. ISO 15622: Transport Information and Control Systems-Adaptive Cruise Control Systems-Performance Requirements and Test Procedures (2002)

  8. Jones, W.D.: Keeping cars. IEEE 38(9), 40–45 (2001)

    Google Scholar 

  9. Kljuno, E., Williams, R.L. II: Vehicle simulation system: controls and virtual- reality- based dynamics simulation. J. Intell. Robot. Syst. 52, 79–99 (2008)

    Article  Google Scholar 

  10. Lijima, T., Higashimata, A., Tange, S., Mizoguchi, K., Kamiyama, H., Iwasaki, K., Egawa, K.: Development of an adaptive cruise control system with brake actuation. SAE Technical Paper. no. 2000-01-1353 (2000)

  11. Littlejohn, D., Fornari, T., Kuo, G., Fulmmer, B., Mooradian, A., Shipp, K., Elliott, J., Lee, K.: Performance, robustness, and durability of an automatic brake system for vehicle adaptive cruise control. SAE Technical Paper. no. 2004-01-0255 (2004)

  12. Naranjo, J.E., Gonzalez, C., Reviejo, J., Garcia, R., Pedro, T.D.: Adaptive fuzzy control for inter-vehicle gap keeping. IEEE Trans. Intell. Transp. Syst. 4(3), 132–142 (2003)

    Article  Google Scholar 

  13. Naranjo, J.E., Gonzalez, C., Reviejo, J., Garcia, R., Pedro, T.D.: ACC+ Stop&Go maneuvers with throttle and brake fuzzy control. IEEE Trans. Intell. Transp. Syst. 7(2), 213–225 (2006)

    Article  Google Scholar 

  14. Noureldin, A., El-Shafie, A., Taha, M.R.: Optimizing neuro-fuzzy modules for data fusion of vehicular navigation systems using temporal cross-validation. Eng. Appl. Artif. Intell. 20, 49–61 (2007)

    Article  Google Scholar 

  15. Person, M., Botling, F., Hesslow, E., Johnsson, R.: Stop&Go controller for adaptive cruise control. In: Proc. of IEEE International Conference on Control Applications, pp. 1692–1697. Kohala Coast -Island of Hawaii, Hawaii, USA (1999)

    Google Scholar 

  16. Prestl, W., Sauer T., Steinle, J., Tshchernoster, O.: The BMW Active Cruise Rajamani, R. and Zhu, C. (2002).: Semi-Autonomous Adaptive Cruise Control Systems. IEEE. 51(5), 1186–1192 (2000)

    Google Scholar 

  17. Riley, B., Kuo, G., Schwartz, B., Zumberge, J.: Development of a controlled braking strategy for vehicle adaptive cruise control. SAE Technical Paper. no. 2000-01-0109 (2000)

  18. SAE J2399: Adaptive Cruise Control (ACC) Operating Characteristics and User Interface (2003)

  19. Sanchez, F., Seguer, M., Freixa, A., Andreas, P., Sochaski, K., Holze, R.: From adaptive cruise control to active safety systems. SAE Technical Paper. no. 2001-01-3245 (2001)

  20. Shi, P.H.: Design and Implementation of an FPGA-based Intelligent Cruise Control System. MS thesis, Department of Electrical and Control Engineering, National Chiao Tung University (2005)

  21. Tanaka, K., Wang, H.O.: Fuzzy Control System Design and Analysis: a Linear Matrix Inequality Approach, 1st Ed. Wiley, Hoboken (2001)

    Google Scholar 

  22. Venhovens, P., Naab, K., Adiprasito, B.: Stop and Go cruise control. Int. J. Automot. Technol. 1(2), 61-69 (2000)

    Google Scholar 

  23. Ward, D., Bertram, T., Hiller, M.: Vehicle dynamics simulation for the development of an extended adaptive cruise control. IEEE Int. Conf. Advanced Intelligent Mechatronics. 730–735 (1999)

  24. Wang, J., Rajamani, R.: Should adaptive cruise-control systems be designed to maintain a constant time gap between vehicles?. IEEE. 53(5), 1480–1490 (2004)

    Google Scholar 

  25. Widmann, G.R., Daniels, M.K., Hamilton, L., Humm, L., Riley, B., Schiffmann J.K., Schnelker, D.E., Wishshon, W.H.: Comparison of lidar- based and radar-based adaptive cruise control systems. SAE Technical Paper, no. 2000-01-0345 (2000)

  26. Yi, K., Hong, J., Kwon, Y.D.: A vehicle control algorithm for Stop-and-Go Cruise control. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 215(10), 1099–1115 (2001)

    Article  Google Scholar 

  27. Żak, S.H.: Systems and Control. New York, Oxford University Press (2003)

    Google Scholar 

  28. Bingul, Z., Cook, G.E., Strauss, A.M.: Application of fuzzy logic to spatial thermal control in fusion welding. IEEE Trans. Ind. Appl. 36(6), 1523–1530, (2000)

    Article  Google Scholar 

  29. Kizir, S., Bingul, Z., Oysu, C.: Fuzzy control of a real time inverted pendulum system. Lect. Notes Comput. Sci. 5177, 674–681 (2008)

    Article  Google Scholar 

  30. Hirofumi, O., Ljubo, V.: Stop & Go vehicle longitudinal model. IEEE Int. Conf. Intell. Transport. Syst. 206–209, (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chih Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, CC., Hsieh, SM. & Chen, CT. Fuzzy Longitudinal Controller Design and Experimentation for Adaptive Cruise Control and Stop&Go. J Intell Robot Syst 59, 167–189 (2010). https://doi.org/10.1007/s10846-010-9393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9393-z

Keywords

Navigation