Skip to main content
Log in

Direct Method Based Control System for an Autonomous Quadrotor

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes a real time control algorithm for autonomous operation of a quadrotor unmanned air vehicle. The quadrotor is a small agile vehicle, which as well as being a excellent test bed for advanced control techniques could also be suitable for internal surveillance, search and rescue and remote inspection. The proposed control scheme incorporates two key aspects of autonomy; trajectory planning and trajectory following. Using the differentially-flat dynamics property of the system, the trajectory optimization is posed as a non-linear constrained optimization within the output space in the virtual domain, not explicitly related to the time domain. A suitable parameterization using a virtual argument as opposed to time is applied, which ensures initial and terminal constraint satisfaction. The speed profile is optimized independently, followed by the mapping to the time domain achieved using a speed factor. Trajectory following is achieved with a standard multi-variable control technique and a digital switch is used to re-optimize the reference trajectory in the event of infeasibility or mission change. The paper includes simulations using a full dynamic model of the quadrotor demonstrating the suitability of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valenti, M., Bethke, B., Fiore, G., How, J.P.: Indoor multi-vehicle flight testbed for fault detection, isolation, and recovery. In: Proceedings of the AIAA Guidance, Navigation and Control ConferenceKeystone, Colorado (2006)

    Google Scholar 

  2. Murphy, R., Stover, S., Choset, H.: Lessons learned on the uses of unmanned vehicles from the 2004 Florida Hurricane Season. CRASAR-TR2005-11, AUVSI Unmanned Systems North America, Baltimore, MD, 27–29 June 2005

  3. Murphy, R., Stover, S.: Gaps analysis for rescue robots. CRASAR-TR2005-12 (2006)

  4. Richards, A., How, J.P.: Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of the American Control Conference, Anchorage, AK, 8–10 May 2002

  5. Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dyn. 10(4), 338–342 (1987)

    Article  MATH  Google Scholar 

  6. Lane, S.H., Stengel, R.F.: Flight control design using nonlinear inverse dynamics. Automatica 24(4), 471–483 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37, 357–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sentoh, E., Bryson, A.E.: Inverse and optimal control for desired outputs. J. Guid. Control Dyn. 15(3), 687–691 (1992)

    Article  Google Scholar 

  9. Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15(5), 994–1002 (1992)

    Article  MATH  Google Scholar 

  10. Lu, P.: Inverse dynamics approach to trajectory optimization for an aerospace plane. J. Guid. Control Dyn. 16(4), 726–732 (1993)

    Article  Google Scholar 

  11. Seywald, H.: Trajectory optimization based on differential inclusions. J. Guid. Control Dyn. 17(3), 480–487 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Elnagar, J., Kazemi, M.A., Razzaghi, M.: The pseudospectral legendre method for discretizing optimal control problems. IEEE Trans. Automat. Contr. 40(10), 1793–1796 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kumar, R., Seywald, H.: Should controls be eliminated while solving optimal control problems via direct methods? J. Guid. Control Dyn. 19(2), 418–423 (1996)

    Article  MATH  Google Scholar 

  14. Kumar, R., Seywald, H.: Dense-sparse discretization for optimization and real-time guidance. J. Guid. Control Dyn. 19(2), 501–503 (1996)

    Article  Google Scholar 

  15. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss–Lobatto quadrature rules. J. Guid. Control Dyn. 19(3), 592–599 (1996)

    Article  MATH  Google Scholar 

  16. Hull, D.G.: Conversion of optimal control problems into parameter optimization problems. J. Guid. Control Dyn. 20(1), 57–60 (1997)

    Article  MATH  Google Scholar 

  17. Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming (Advances in Design and Control). Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

  18. Conway, B.A., Larson, K.M.: Collocation versus differential inclusion in direct optimization. J. Guid. Control Dyn. 21(5), 780–785 (1998)

    Article  Google Scholar 

  19. Fahroo, F., Ross, I.M.: Computational optimal control by spectral collocation with differential inclusion. In: Proceedings of the 1999 Flight Mechanics Symposium, pp. 185–200, NASA-Goddard Space Flight Center, Greenbelt, 18–20 May 1999

  20. Fahroo, F., Ross, I.M.: A second look at approximating differential inclusions. J. Guid. Control Dyn. 24(1), 131–133 (2001)

    Article  Google Scholar 

  21. Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 25(1), 160–166 (2002)

    Article  Google Scholar 

  22. Fahroo, F., Ross, I.M.: Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dyn. 27(3), 397–405 (2004)

    Article  Google Scholar 

  23. Paris, S.W., Hargraves, C.R.: OTIS 3.0 Manual. Boeing Space and Defense Group, Seattle (1996)

    Google Scholar 

  24. Betts, J.T., Huffman, W.P.: Sparse Optimal Control Software SOCS. Mathematics and Engineering Analysis, Technical Document MEA-LR-085. Boeing Information and Support Services, The Boeing Company, Seattle (1997)

    Google Scholar 

  25. von Stryk, O.: User’s Guide for DIRCOL (Version 2.1): A Direct Collocation Method for the Numerical Solution of Optimal Control Problems. Fachgebiet Simulation und Systemoptimierung (SIM), Technische Universität Darmstadt (2000)

  26. Ross, I.M.: User’s Manual for DIDO: A MATLAB Application Package for Solving Optimal Control Problems. Tomlab Optimization Inc., TR 04-01.0 (2004)

  27. Nieuwstadt, M.J., Murray, R.M.: Approximate trajectory generation for differentially flat systems with zero dynamics. In: Proceedings of the 34th IEEE Conference Decision Control, New Orleans, LA, 13–15 December 1995

  28. Yakimenko, O., Xu, Y., Basset, G.: Computing short-time aircraft maneuvers using direct methods. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, 18–21 August 2008

  29. Bouabdallah, A., Noth, A., Siegwart, R.: PID Versus LQ control techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004

  30. Kaminer, I., Yakimenko, O., Pascoal, A.: On path generation, trajectory tracking and coordinated control for time-critical missions of multiple UAVs. In: Proceedings of the IEEE American Control Conference, Minneapolis, MN 14–16 June 2006

  31. Cowling, I.D., Whidborne, J.F., Cooke, A.K.: Optimal trajectory planning and LQR control for a quadrotor UAV. In: Proceedings of the International Conference Control—2006, Glasgow, Scotland, 30 August–11 September 2006

  32. Kaminer, I., Yakimenko, O., Dobrokhodov, V., Pascoal, A., Hovakimyan, N., Patel, V., Cao, C., Young, A.: Coordinated path following for time-critical missions of multiple UAVs via L1 adaptive output feedback controllers. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, 20–23 August 2007

  33. Taranenko, V.T.: Experience on Application of Ritz’s, Poincare’s, and Lyapunov’s Methods in Solving of Flight Dynamics Problems. Air Force Engineering Academy Press, Moscow (1968, in Russian)

    Google Scholar 

  34. Taranenko, V.T., Momdzhi, V.G.: Direct Variational Method in Boundary Problems of Flight Dynamics. Mashinostroenie Press, Moscow (1968, in Russian)

    Google Scholar 

  35. Neljubov, A.I.: Mathematical Methods of Calculation of Combat, Takeoff/Climb, and Landing Approach Manoeuvres for the Aircraft with 2-D Thrust Vectoring. Flight Characteristics and Combat Maneuvering of Manned Vehicles. Air Force Engineering Academy Press, Moscow (1968, in Russian)

    Google Scholar 

  36. Yakimenko, O.: Direct method for rapid prototyping of near-optimal aircraft trajectories. J. Guid. Control Dyn. 23(5), 865–875 (2000)

    Article  Google Scholar 

  37. Fliess, M., Levine, J., Martin, Ph., Rouchon, P.: Sur les Systèmes non Linéarités Différentiellement Plats. C. R. Acad. Sci., Paris 315(série I), 619–624 (1992)

    MATH  MathSciNet  Google Scholar 

  38. Martin, P., Devasia, S., Paden, B.: A different look at output tracking: control of a VTOL aircraft. In: Proceedings of the 33rd IEEE Conference Decision Control, Lake Buena Vista, FL, 14–16 December 1994

  39. Milam, M.B., Mushambi, K., Murray, R.: A new computational approach to real-time trajectory generation for constrained mechanical systems. In: Proceedings of the 39th IEEE Conference Decision Control, Sydney, NSW, Australia, 12–15 December 2000

  40. Koo, T.J., Sastry, S.: Differential flatness based full authority helicopter design. In: Proceedings of the 38th IEEE Conference Decision Control, Phoenix, AZ, 7–10 December 1999

  41. Beji, L., Abichou, A.: Streamlined rotors mini rotorcraft: trajectory generation and tracking. Int. J. Control Autom. Syst. 3(1), 87–99 (2005)

    Google Scholar 

  42. Driessen, B.J., Robin, A.L.: A globally convergent tracking controller for the X4 Flyer rotor craft for reference trajectories with positive thrust. Robotica 4, 375–388 (2004)

    Article  Google Scholar 

  43. Mathworks’ Real-Time Workshop. http://www.mathworks.com/products/rtw/

  44. Cowling, I.D., Whidborne, J.F., Cooke, A.K.: MBPC for autonomous operation of a quadrotor air vehicle. In: Proceedings of the 21st International UAV Systems Conference, Bristol, UK, 3–5 April 2006

  45. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

    Article  MathSciNet  Google Scholar 

  46. Cook, M.V.: Flight Dynamics Principles. Butterworth Heinemann, Oxford (1997)

    Google Scholar 

  47. Chelouah, A.: Extensions of differential flat fields and Liouvillian systems. In: Proceedings of the 36th IEEE Conference Decision Control, San Diego, CA, 10–12 December 1997

  48. Alekhin, D.V., Yakimenko, O.A.: Synthesis of optimization algorithm for planned-route flight trajectory by direct variational method. J. Comput. Syst. Sci. Int. 38(4), 650–666 (1999)

    MATH  Google Scholar 

  49. Dobrokhodov, V.N., Yakimenko, O.A.: Synthesis of trajectorial control algorithms at the stage of rendezvous of an airplane with a maneuvering object. J. Comput. Syst. Sci. Int. 38(2), 262–277 (1999)

    MATH  Google Scholar 

  50. Bevilacqua, R., Yakimenko, O., Romano, M.: On-line generation of quasi-optimal docking trajectories. In: Proceedings of the 7th International Conference On Dynamics and Control of Systems and Structures in Space (DCSSS), Greenwich, London, England, 16–20 July 2006

  51. Eikenberry, B., Yakimenko, O., Romano, M.: A vision based navigation among multiple flocking robots: modeling and simulation. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference, Keystone, CO, 21–24 August 2006

  52. Yakimenko, O.: Direct method for real-time prototyping of optimal control. In: Proceedings of the International Conference Control-2006, Glasgow, Scotland, 30 August–11 September 2006

  53. Vlassenbroeck, J., Van Dooren, R.: A Chebyshev technique for solving nonlinear optimal control problems. IEEE Trans. Automat. Contr. 33(4), 333–340 (1988)

    Article  MATH  Google Scholar 

  54. Huzmezan, M., Dumont, G.A., Gough, W.A., Kovac, S.: Multivariable Laguerre-based indirect adaptive predictive control a reliable practical solution for process control. In: Proceedings of the IASTED Modeling and Control Conference, Innsbruck, Austria, 18–21 February 2001

  55. Boyarko, G., Romano, M., Yakimenko, O.: Time-optimal reorientation of a spacecraft using a direct optimization method based on inverse dynamics. In: Proceedings of the IEEE Aerospace Conference, Big Sky, MT, 6–13 March 2010

  56. Slegers, N., Yakimenko, O.: Optimal control for terminal guidance of autonomous parafoils. In: Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Seattle, WA, 4–7 May 2009

  57. Schilling, R.J., Harris, S.L.: Applied Numerical Methods for Engineers Using MATLAB and C, pp. 336–337. Brooks/Cole Publishing Company, Pacific Grove (2000)

  58. Cooke, A.K., Fitzpatrick, E.: Helicopter Test and Evaluation. Blackwell and QinetiQ, Oxford (2002)

    Google Scholar 

  59. Pontrjagin, L., Boltjanskiy, V., Gamkrelidze, R., Mishenko, E.: Mathematical Theory of Optimal Processes. Interscience, New York (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Yakimenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowling, I.D., Yakimenko, O.A., Whidborne, J.F. et al. Direct Method Based Control System for an Autonomous Quadrotor. J Intell Robot Syst 60, 285–316 (2010). https://doi.org/10.1007/s10846-010-9416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9416-9

Keywords

Navigation