Skip to main content

Advertisement

Log in

PDC Control Design for Non-holonomic Wheeled Mobile Robots with Delayed Outputs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a new technique for tracking-error model-based Parallel Distributed Compensation (PDC) control for non-holonomic vehicles where the outputs (measurements) of the system are delayed and the delay is constant. Briefly, this technique consists of rewriting the kinematic error model of the mobile robot tracking problem into a TS fuzzy representation and finding a stabilizing controller by solving LMI conditions for the tracking-error model. The state variables are estimated by nonlinear predictor observer where the outputs are delayed by a constant delay. To illustrate the efficiency of the proposed approach a comparison between the TS fuzzy observer and the nonlinear predictor observer is shown. For this study the reference trajectory is built by taking into account the acceleration limits of the mobile robot. All experiments are implemented on simulation and the real-time platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vadakkepat, P., Peng, X., Kiat, Q.B., Heng, L.T.: Evolution of fuzzy behaviors for multi-robotic system. Robot. Auton. Syst. 55(2), 146–161 (2007)

    Article  Google Scholar 

  2. Guechi, E.-H., Lauber, J., Dambrine, M.: On-line moving-obstacle avoidance using piecewise Bézier curves with unknown obstacle trajectory. In: 16th Mediterranean Conference on Control and Automation. IEEE Med., vol. 08, pp. 505–510 (2008)

  3. Yen, J., Pfluger, N.: A Fuzzy logic based extension to Payton and Rosenblatt’s command fusion method for mobile robot navigation. IEEE Trans. Syst. Man Cybern. 25(6), 971–978 (1995)

    Article  Google Scholar 

  4. Fliess, M., Levine, J., Martin, P., Rouchon, P.: Flatness and defect of nonlinear systems; introductory theory and examples. Int. J. Control 61(6), 1327–1361 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Laumond, J.-P.: Robot Motion Planning and Control. LNICS, vol. 229. Springer, New York (1998)

    Google Scholar 

  6. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for a non-holonomic mobile robot. In: Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS’91, vol. 3, pp. 1236–1241. Osaka, Japan (1991)

  7. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Millman, R.S., Brockett, R.W., Sussmann, H.J. (eds.) Differential Geometric Control Theory. Birkauser, Boston (1983)

    Google Scholar 

  8. Samson, C.: Time-varying feedback stabilization of car-like wheeled mobile robots. Int. J. Rob. Res. 12(1), 55–64 (1993)

    Article  MathSciNet  Google Scholar 

  9. Defoort, M., Floquet, T., Kökösy, A., Perruquetti, W.: Integral sliding mode control for trajectory tracking of a unicycle type mobile robot. Integr. Comput.-Aided Eng. 13(3), 277–288 (2006)

    Google Scholar 

  10. Klanèar, G., Škrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55(3), 460–469 (2007)

    Article  Google Scholar 

  11. Maalouf, E., Saad, M., Saliah, H.: A higher level path tracking controller for a four-wheel differentially steered mobile robot. Robot. Auton. Syst. 54, 23–33 (2005)

    Article  Google Scholar 

  12. Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear system via fuzzy control: quadratic stabilizability, H∞ control theory and linear matrix. IEEE Trans. Fuzzy Syst. 4, 1–13 (1996)

    Article  Google Scholar 

  13. Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems; stability and design. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)

    Article  Google Scholar 

  14. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  15. Jolly, K.G., Sreerama Kumar, R., Vijayakumar, R.: A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits. Robot. Auton. Syst. 57(1), 23–33 (2009)

    Article  Google Scholar 

  16. Lepetič, M., Klančar, G., Škrjanc, I., Matko, D., Potočni, B.: Time optimal path planning considering acceleration limits. Robot. Auton. Syst. 45(3–4), 199–210 (2003)

    Article  Google Scholar 

  17. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    MATH  Google Scholar 

  18. Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9, 324–332 (2001)

    Article  Google Scholar 

  19. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley-Interscience, New York (2001)

    Google Scholar 

  20. Yoneyama, J., Noshikawa, M., Katayama, H., Ichikawa, A.: Design of output feedback controllers for Takagi–Sugeno fuzzy systems. Fuzzy Sets Syst. 121, 127–148 (2001)

    Article  MATH  Google Scholar 

  21. Chamroo, A., Seuret, A., Vasseur, C., Richard, J.-P., Wang, H.P.: Observing and controlling plants using their delayed and sampled outputs. In: IMACS Multiconference on Computational Engineering in Systems Applications, China, pp. 851–857 (2006)

  22. Seuret, A., Michaut, F., Richard, J.-P., Divoux, T.: Networked control using GPS synchronization. In: American Control Conference, pp. 4195–4200 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Hadi Guechi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guechi, EH., Lauber, J., Dambrine, M. et al. PDC Control Design for Non-holonomic Wheeled Mobile Robots with Delayed Outputs. J Intell Robot Syst 60, 395–414 (2010). https://doi.org/10.1007/s10846-010-9420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9420-0

Keywords