Abstract
This paper presents a new technique for tracking-error model-based Parallel Distributed Compensation (PDC) control for non-holonomic vehicles where the outputs (measurements) of the system are delayed and the delay is constant. Briefly, this technique consists of rewriting the kinematic error model of the mobile robot tracking problem into a TS fuzzy representation and finding a stabilizing controller by solving LMI conditions for the tracking-error model. The state variables are estimated by nonlinear predictor observer where the outputs are delayed by a constant delay. To illustrate the efficiency of the proposed approach a comparison between the TS fuzzy observer and the nonlinear predictor observer is shown. For this study the reference trajectory is built by taking into account the acceleration limits of the mobile robot. All experiments are implemented on simulation and the real-time platform.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Vadakkepat, P., Peng, X., Kiat, Q.B., Heng, L.T.: Evolution of fuzzy behaviors for multi-robotic system. Robot. Auton. Syst. 55(2), 146–161 (2007)
Guechi, E.-H., Lauber, J., Dambrine, M.: On-line moving-obstacle avoidance using piecewise Bézier curves with unknown obstacle trajectory. In: 16th Mediterranean Conference on Control and Automation. IEEE Med., vol. 08, pp. 505–510 (2008)
Yen, J., Pfluger, N.: A Fuzzy logic based extension to Payton and Rosenblatt’s command fusion method for mobile robot navigation. IEEE Trans. Syst. Man Cybern. 25(6), 971–978 (1995)
Fliess, M., Levine, J., Martin, P., Rouchon, P.: Flatness and defect of nonlinear systems; introductory theory and examples. Int. J. Control 61(6), 1327–1361 (1995)
Laumond, J.-P.: Robot Motion Planning and Control. LNICS, vol. 229. Springer, New York (1998)
Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for a non-holonomic mobile robot. In: Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS’91, vol. 3, pp. 1236–1241. Osaka, Japan (1991)
Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Millman, R.S., Brockett, R.W., Sussmann, H.J. (eds.) Differential Geometric Control Theory. Birkauser, Boston (1983)
Samson, C.: Time-varying feedback stabilization of car-like wheeled mobile robots. Int. J. Rob. Res. 12(1), 55–64 (1993)
Defoort, M., Floquet, T., Kökösy, A., Perruquetti, W.: Integral sliding mode control for trajectory tracking of a unicycle type mobile robot. Integr. Comput.-Aided Eng. 13(3), 277–288 (2006)
Klanèar, G., Škrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55(3), 460–469 (2007)
Maalouf, E., Saad, M., Saliah, H.: A higher level path tracking controller for a four-wheel differentially steered mobile robot. Robot. Auton. Syst. 54, 23–33 (2005)
Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear system via fuzzy control: quadratic stabilizability, H∞ control theory and linear matrix. IEEE Trans. Fuzzy Syst. 4, 1–13 (1996)
Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems; stability and design. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)
Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia (1994)
Jolly, K.G., Sreerama Kumar, R., Vijayakumar, R.: A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits. Robot. Auton. Syst. 57(1), 23–33 (2009)
Lepetič, M., Klančar, G., Škrjanc, I., Matko, D., Potočni, B.: Time optimal path planning considering acceleration limits. Robot. Auton. Syst. 45(3–4), 199–210 (2003)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)
Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9, 324–332 (2001)
Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley-Interscience, New York (2001)
Yoneyama, J., Noshikawa, M., Katayama, H., Ichikawa, A.: Design of output feedback controllers for Takagi–Sugeno fuzzy systems. Fuzzy Sets Syst. 121, 127–148 (2001)
Chamroo, A., Seuret, A., Vasseur, C., Richard, J.-P., Wang, H.P.: Observing and controlling plants using their delayed and sampled outputs. In: IMACS Multiconference on Computational Engineering in Systems Applications, China, pp. 851–857 (2006)
Seuret, A., Michaut, F., Richard, J.-P., Divoux, T.: Networked control using GPS synchronization. In: American Control Conference, pp. 4195–4200 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guechi, EH., Lauber, J., Dambrine, M. et al. PDC Control Design for Non-holonomic Wheeled Mobile Robots with Delayed Outputs. J Intell Robot Syst 60, 395–414 (2010). https://doi.org/10.1007/s10846-010-9420-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-010-9420-0