Skip to main content

Advertisement

Log in

Semi-globally Exponential Tracking Observer/Controller for Robots with Joint Hysteresis and Without Velocity Measurement

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this work, we consider a multiple degree of freedom robotic plant with joint hysteresis and without velocity measurement. We show, by construction, how a semi-globally exponential hysteresis observer/controller that assumes velocity measurement, a number of which we point out from the literature, can be combined/modified with a velocity observer to yield a combined semi-globally exponential tracking observer/controller. The resulting observer/controller estimates both the hysteresis state and the joint velocity. We prove that the combined estimation error and tracking error converges to zero semi-globally exponentially. One deemed contribution as compared to previous work for this same type of plant is that the usual requirement of velocity measurement has been removed; another is the proved semi-globally exponential result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Berghuis, H., Nijmeijer, H.: Observer design in the tracking control problem for robots. In: Proceedings of the 2nd IFAC Symposium on Nonlinear Control Systems Design, pp. 197–202, 24–26 June, Bordeaux, France (1992)

  2. Berghuis, H., Nijmeijer, H.: A passivity approach to controller–observer design for robots. IEEE Trans. Robot. Autom. 9, 740–754 (1993)

    Article  Google Scholar 

  3. Canudas de Wit, C., Olsson, H., Astrom, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Automat. Contr. 40(3), 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C., Lin, K.: Observer-based contouring design of a biaxial stage system subject to friction. IEEE Trans. Control Syst. Technol. 16(2), 322–329 (2008)

    Article  Google Scholar 

  5. Craig, J.J.: Introduction to Robotics, 2nd edn. Addison-Wesley Publishing Company, Reading, Massachusetts (1989)

    MATH  Google Scholar 

  6. de Queiroz, M.S., Dawson, D., Burg, T.: Position/force control of robot manipulators without velocity/force measurements. Int. J. Robot. Autom. 12(1), 1–14 (1997)

    Google Scholar 

  7. Dominquez, A., Sedaghati, R., Stiharu, I.: A new dynamic hysteresis model for magnetorheological dampers. Smart Mater. Struc. 15, 1179–1189 (2006)

    Article  Google Scholar 

  8. Driessen, B.J., Duggirala, V.M.: Globally asymptotic and locally exponential tracking observer/controller for a relatively large class of systems with hysteresis. J. Intell. Robot. Syst. 50(2), 207–215 (2007)

    Article  Google Scholar 

  9. Driessen, B.J., Kondreddi, S.: Tracking observer/controller for a relatively large class of systems with hysteresis and without velocity measurement. Syst. Control. Lett. 58(1), 26–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heine, C.P.: Simulated Response of Degrading Hysteretic Joints with Slack Behavior. Ph.D. thesis, Vanderbilt University (2001)

  11. Jiang, B., Staroswiecki, M.: Fault diagnosis for nonlinear uncertain systems using robust/sliding mode observers. Control Intell. Syst. 33(3), 151–157 (2005)

    MATH  Google Scholar 

  12. Kawabe, H., Yoshida, K., Iida, T.: Vibration control of a pendulum system by a VSS sliding mode control technique. Control Intell. Syst. 23(1), 29–36 (2000)

    Google Scholar 

  13. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002)

    MATH  Google Scholar 

  14. Lim, Y.L., Dawson, D.M., Anderson, K.: Re-examining the Nicosia–Tomei robot observer–controller from a backstepping perspective. IEEE Trans. Control Syst. Technol. 4(3), 304–310 (1996)

    Article  Google Scholar 

  15. Lin, C., Yang, S.: Precise positioning of piezo-actuated stages using hysteresis-observer based control. Mechatronics 16(7), 417–426 (2006)

    Article  Google Scholar 

  16. Lin, F., Shieh, H., Huang, P., Teng, L.: Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(9), 1649–1661 (1996)

    Google Scholar 

  17. Lim, S.Y., Hu, J., Dawson, D.M.: An output feedback controller for trajectory tracking of RLED robots using an observed backstepping approach. In: Proceedings of the Third IEEE Conference on Control Applications, vol. 1, pp. 71–76 (1994)

  18. Lim, S.Y., Hu, J., Dawson, D.M.: Output feedback controller for trajectory tracking of RLED robots using an observed backstepping approach. Int. J. Robot. Autom. 11(4), 149–160 (1996)

    Google Scholar 

  19. Lim, S.Y., Hu, J., Dawson, D.M., de Quieroz, M.: A partial state feedback controller for trajectory tracking of rigid-link flexible-joint robots using an observed backstepping approach. J. Robot. Syst. 12(12), 727–746 (1995)

    MATH  Google Scholar 

  20. Lin, L.C., Li, H.C.: Discrete-time adaptive fuzzy control with hysteresis observer for a three-axis flexural stage. J. Chin. Inst. Eng. 31(6), 894–911 (2008)

    Google Scholar 

  21. Loria, A., Nijmeijer, H.: Bounded output feedback tracking of fully actuated Euler–Lagrange systems. Syst. Control. Lett. 33(3), 151–161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Malagari, S., Driessen, B.J.: Globally exponential continuous controller/observer for tracking in robots with hysteretic friction. Robotica (2009). doi:10.1017/S0263574709990452

    Google Scholar 

  23. Nicosia, S., Tomei, P.: Robot control by using only position measurements. IEEE Trans. Automat. Contr. 35(9), 1058–1061 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Panteley, E., Ortega, R., Gafvert, M.: An adaptive friction compensator for global tracking in robot manipulators. Syst. Control. Lett. 33, 307–313 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng, C., Chen, C.: Biaxial contouring control with friction dynamics using a contour index approach. Int. J. Mach. Tools Manuf. 47, 1542–1555 (2007)

    Article  Google Scholar 

  26. Slotine, J., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)

    MATH  Google Scholar 

  27. Teel, A., Praly, L.: Global stabilizability and observability imply semi-global stabilizability by output feedback. Syst. Control. Lett. 22(5), 313–325 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vargas, F., De Pieri, E., Castelan, E.: Identification and friction compensation for an industrial robot using two degrees of freedom controllers. In: 8th International Conference on Control, Automation, Robotics, and Vision, vol. 2(2), pp. 1146–1151 (2004)

  29. Zhang, F., Dawson, D.M., de Queiroz, M.S., Dixon, W.E.: Global adaptive output tracking control of robot manipulators. IEEE Trans. Automat. Contr. 45(6), 1203–1208 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malagari, S., Driessen, B.J. Semi-globally Exponential Tracking Observer/Controller for Robots with Joint Hysteresis and Without Velocity Measurement. J Intell Robot Syst 62, 29–58 (2011). https://doi.org/10.1007/s10846-010-9437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9437-4

Keywords