Skip to main content

Advertisement

Log in

A Road Following Approach Using Artificial Neural Networks Combinations

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Navigation is a broad topic that has been receiving considerable attention from the mobile robotic community over the years. In order to execute autonomous driving in outdoor urban environments it is necessary to identify parts of the terrain that can be traversed and parts that should be avoided. This paper describes an analyses of terrain identification based on different visual information using a MLP artificial neural network and combining responses of many classifiers. Experimental tests using a vehicle and a video camera have been conducted in real scenarios to evaluate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arkin, R.C.: An Behavior-based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Wolf, D., Sukhatme, G., Fox, D., Burgard, W.: Autonomous terrain mapping and classification using Hidden Markov models. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp. 2026–2031 (2005)

  3. He, Y., Wang, H., Zhang, B.: Color-based road detection in urban traffic scenes. IEEE Trans. Intell. Transp. Syst. 5(4), 309 (2004). doi:10.1109/TITS.2004.838221

    Article  Google Scholar 

  4. Broggi, A., Bert, S.: Vision-based road detection in automotive systems: a real-time expectationdriven approach. J. Artif. Intell. Res. 3, 325 (1995)

    Google Scholar 

  5. Rotaru, C., Graf, T., Zhang, J.: Extracting road features from color images using a cognitive approach. In: Intelligent Vehicles Symposium, 2004, pp. 298–303. IEEE (2004). doi:10.1109/IVS.2004.1336398

  6. Zhang, J., Nagel, H.H.: Texture-based segmentation of road images. In: Proceedings of the Intelligent Vehicles ’94 Symposium, pp. 260–265 (1994). doi:10.1109/IVS.1994.639516

  7. Ghurchian, R., Takahashi, T., Wang, Z., Nakano, E.: On robot self-navigation in outdoor environments by color image processing. In: 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002, vol. 2, pp. 625–630 (2002)

  8. Pomerleau, D.: Neural network vision for robot driving. In: Arbib M. (ed.) The Handbook of Brain Theory and Neural Networks (1995)

  9. Foedisch, M.: Adaptive real-time road detection using neural networks. In: Proc. 7th Int. Conf. on Intelligent Transportation Systems. Washington DC (2004)

  10. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  11. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  12. Joblove, G.H., Greenberg, D.: Color spaces for computer graphics. SIGGRAPH Comput. Graph. 12(3), 20 (1978). doi:10.1145/965139.807362

    Article  Google Scholar 

  13. Reiter, C.: With J: image processing 2: color spaces. SIGAPL APL Quote Quad 34(3), 3 (2004). doi:10.1145/1127556.1127557

    Article  Google Scholar 

  14. Churchland, P.S., Sejnowski, T.J.: The Computational Brain. MIT Press, Cambridge (1994)

    Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: Foundations of Research, pp. 673–695 (1988)

  16. University of Stuttgart: http://www.ra.cs.uni-tuebingen.de/SNNS/ (2010). Visited in March 2010

  17. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly, Cambridge (2008)

    Google Scholar 

  18. Lee, J., Crane III, C.D., Kim, S., Kim, J. (eds.): Road Following in an Unstructured Desert Environment using Monocular Color Vision as Applied to the DARPA Grand Challenge. International Conference on Control, Automation and Systems (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Yuri Shinzato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinzato, P.Y., Wolf, D.F. A Road Following Approach Using Artificial Neural Networks Combinations. J Intell Robot Syst 62, 527–546 (2011). https://doi.org/10.1007/s10846-010-9463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9463-2

Keywords