Skip to main content
Log in

Experimental Results in Multi-UAV Coordination for Disaster Management and Civil Security Applications

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper describes a multi-UAV distributed decisional architecture developed in the framework of the AWARE Project together with a set of tests with real Unmanned Aerial Vehicles (UAVs) and Wireless Sensor Networks (WSNs) to validate this approach in disaster management and civil security applications. The paper presents the different components of the AWARE platform and the scenario in which the multi-UAV missions were carried out. The missions described in this paper include surveillance with multiple UAVs, sensor deployment and fire threat confirmation. In order to avoid redundancies, instead of describing the operation of the full architecture for every mission, only non-overlapping aspects are highlighted in each one. Key issues in multi-UAV systems such as distributed task allocation, conflict resolution and plan refining are solved in the execution of the missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botelho, S.C., Alami, R.: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1234–1239. Detroit, USA (1999)

  2. Caballero, F., Merino, L., Gil, P., Maza, I., Ollero, A.: A probabilistic framework for entire WSN localization using a mobile robot. Robot. Auton. Syst. 56(10), 798–806 (2008). doi: 10.1016/j.robot.2008.06.003

    Article  Google Scholar 

  3. Caballero, F., Merino, L., Maza, I., Ollero, A.: A particle filtering method for wireless sensor network localization with an aerial robot beacon. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 596–601. Pasadena, California, USA (2008). doi:10.1109/ROBOT.2008.4543271

  4. Capitan, J., Merino, L., Caballero, F., Ollero, A.: Delayed-state information filter for cooperative decentralized tracking. In: Proceedings of the International Conference on Robotics and Automation, pp. 3865–3870 (2009)

  5. Dias, M.B., Stenz, A.: Opportunistic optimization for market-based multirobot control. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2714–2720. Lausanne, Switzerland (2002)

  6. Gerkey, B., Matarić, M.: Sold!: Auction methods for multi-robot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  7. Gerkey, B., Matarić, M.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Rob. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  8. Gerkey, B.P., Matarić, M.J.: Multi-robot task allocation: analyzing the complexity and optimality of key architectures. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 3862–3868. Taipei, Taiwan (2003)

  9. Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors 9(9), 7566–7579 (2009). doi:10.3390/s90907566

    Article  Google Scholar 

  10. Hert, S., Lumelsky, V.: Polygon area decomposition for multiple-robot workspace division. Int. J. Comput. Geom. Appl. 8(4), 437–466 (2001)

    Article  MathSciNet  Google Scholar 

  11. Konolige, K., Fox, D., Limketkai, B., Ko, J., Stewart, B.: Map merging for distributed robot navigation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 212–217 (2003)

  12. Kontitsis, M., Garcia, R., Valavanis, K.: Design, implementation and testing of a vision system for small unmanned vertical take off and landing vehicles with strict payload limitations. J. Intell. Rob. Syst. 44(2), 139–159 (2005)

    Article  Google Scholar 

  13. Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-UAV cooperation and control for load transportation and deployment. J. Intell. Rob. Syst. 57(1–4), 417–449 (2010). doi:10.1007/s10846-009-9352-8

    Article  Google Scholar 

  14. Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems, vol. 6, pp. 221–230. Springer (2007)

  15. Merino, L., Caballero, F., de Dios, J.M., Ferruz, J., Ollero, A.: A cooperative perception system for multiple UAVs: application to automatic detection of forest fires. Journal of Field Robotics 23(3–4), 165–184 (2006)

    Article  Google Scholar 

  16. Ollero, A., Lacroix, S., Merino, L., Gancet, J., Wiklund, J., Remuss, V., Veiga, I., Gutierrez, L.G., Viegas, D.X., A.Gonzalez, M., Mallet, A., Alami, R., Chatila, R., Hommel, G., Colmenero, F.J., Arrue, B., Ferruz, J., Martinez, J.R., Caballero, F.: Multiple eyes in the sky: architecture and perception issues in the COMETS unmanned air vehicles project. IEEE Robot. Autom. Mag. 12(2), 46–57 (2005)

    Article  Google Scholar 

  17. Ollero, A., Maza, I. (eds.): Multiple Heterogeneous Unmanned Aerial Vehicles. Springer Tracts on Advanced Robotics. Springer (2007)

  18. Parker, L.: ALLIANCE: an architecture for fault-tolerant multi-robot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  19. Parker, L.: Distributed intelligence: overview of the field and its application in multi-robot systems. Journal of Physical Agents 2(1), 5–14 (2008)

    Google Scholar 

  20. Smith, G.: The Contract Net Protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)

    Article  Google Scholar 

  21. Valavanis, K. (ed.): Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy. Intelligent Systems, Control and Automation: Science and Engineering. Springer (2007)

  22. Viguria, A., Maza, I., Ollero, A.: SET: an algorithm for distributed multirobot task allocation with dynamic negotiation based on task subsets. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3339–3344. Rome, Italy (2007). doi:10.1109/ROBOT.2007.363988

  23. Viguria, A., Maza, I., Ollero, A.: S+T: an algorithm for distributed multirobot task allocation based on services for improving robot cooperation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3163–3168. Pasadena, California, USA (2008). doi:10.1109/ROBOT.2008.4543692

  24. Viguria, A., Maza, I., Ollero, A.: Distributed service-based cooperation in aerial/ground robot teams applied to fire detection and extinguishing missions. Adv. Robot. 24(1–2), 1–23 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Maza.

Additional information

This work was partially supported by the AWARE project (IST-2006-33579) funded by the European Commission and the ROBAIR Project funded by the Spanish Research and Development Program (DPI2008-03847). J. R. Martínez-de-Dios also thanks the support provided by the CONET Network of Excellence (INFSO-ICT-224053) funded by the European Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maza, I., Caballero, F., Capitán, J. et al. Experimental Results in Multi-UAV Coordination for Disaster Management and Civil Security Applications. J Intell Robot Syst 61, 563–585 (2011). https://doi.org/10.1007/s10846-010-9497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9497-5

Keywords

Navigation